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1. Introduction

The study of sky radiance polarisation is an old topics, but it remains of current interest and still raises challenging questions.

The main features of skylight polarisation have been observed by Arago in 1809, and detailed measurements have been performed until the end of the 19th century by visual observation with polarimeters (Coulson, 1988). The first modern measurements with an automatic photoelectric instrument are due to Sekera (1956) and his coworkers.

Modelling of the polarised light relies on the Stokes (1852) parameters, which are presented in section 2. Section 3 concerns the process of single scattering, characterized by a scattering (or phase) matrix. The first comprehensive analysis of radiative transfer in a scattering medium, taking into account polarisation, is due to Chandrasekhar (1950); he showed that radiance and polarisation cannot be treated separately; radiance depends on the state of polarisation and has to be derived from a matrix, or vector, radiative transfer equation (VRTE), instead of the usual scalar radiative transfer equation (SRTE). Continuation of Chandrasekhar's work has been performed by Sekera (1956) and coworkers; they produced numerical tables for the reflectance and transmittance of a pure homogeneous Rayleigh atmosphere. The VRTE, with the methods available for its resolution are presented in section 4.

The method of Successive Orders of Scattering (SOS) is applied to Rayleigh scattering in section 5, and some results are presented for ultraviolet (UV) radiation. Section 6 discuss the impact of aerosols.

 

2. Representation of polarised radiation.

The 4 Stokes parameters I, Q, U, V characterize the energy I transported by the electromagnetic wave, its degree of polarisation, the direction of polarisation, and the ellipticity. The parameter I can be any energetic quantity, as a radiance, an irradiance,..etc., and is generally named "intensity". The parameters Q, U, V are defined, as is I, from the two components of the electric vector on two arbitrary perpendicular axis (x,y) in the wave plane. Q, U, V are quantities with the same energetic dimension as I. Generally a reference plane is choosen through the direction of propagation; the axis x is parallel to the reference plane and the axis y perpendicular.  

The polarised intensity is Ip = (Q2+U2+V2)1/2 , and the degree of polarisation P= Ip/I .

For natural light, Q=U=V=0 . 

For linearly polarised light, V=0; in this case, Q= Ip cos 2,  U=Ip sin 2, where  is the angle between the direction of vibration and the x axis. In atmospheric problems, V generally remains very small, and is often neglected.

To each scalar quantity I it is convenient to associate a vector quantity I = (I,Q,U,V)T , where T designs the transpose matrix.

As the parameters Q and U depend on the choice of the axis, for a rotation of the axis, the intensity vector I has to be multipied by a 4x4 transformation matrix R ().
3. Single scattering. The phase matrix.

In a scattering medium, illuminated with natural radiation (non polarised), the angular distribution of the radiation scattered after one encounter with a scattering particle (single scattering process) is given by the normalized phase function p(), where  is the scattering angle, i.e. the angle between the incidence and the scattering directions.

Taking account polarisation, with the formalism presented above, the incident irradiance and the scattered radiant intensity are respectively replaced by the corresponding vector quantities. The reference plane is obviously the scattering plane, defined by the direction of incidence and the direction of diffusion. The scalar phase function p() is replaced by a 4x4 phase matrix P(); only 7 of its 16 elements are independent (Hovenier et al., 1986).

For an assembly of particles following some symmetry rules, the phase matrix is usually written (van der Mee and Hovenier, 1990) as



P11()
P12()
0

0

   P() =
P12()
P22()
0

0



0

0

P33()
P34()



0

0

-P34()
P44()

with = cos 

Furthermore for spherical particles, according to Mie theory, P22=P11, P44=P33.

The upper left element P11 is simply identical to the scalar phase function p, and is similarly normalized, by its integral between –1 and +1 equal to 2.

The phase matrix is well known for molecular Rayleigh scattering and for spherical particle Mie scattering; for an ensemble of spherical particles of various sizes, the elements of the phase matrix are obtained by integration weighted with the size distribution, exactly as it is done for the phase function.

Scattering by non spherical particles is much more complex and is the subject of active research (Mishchenko et al., 2000)
4. The matrix or vector radiative transfer equation (VRTE).

The radiative transfer equation, which express the energy conservation, can be written for the vector radiance, as well as for the scalar radiance. The incident non polarised extraterrestrial flux F0 is replaced by the corresponding matrix F0 = (F0,0,0,0)T. One has to be careful that all the terms contributing to the VRTE are refered to the same reference plane, which is taken as the vertical plane containing the direction of propagation. Therefore, a double multiplication by the transformation matrix R is necessary, first before scattering to refer the incident radiation to the scattering plane, then after scattering to change from the scattering plane to the vertical plane of the scattering direction.

With the usual coordinates, zenith angle = cos-1 , and azimuth , the phase matrix for scattering from a direction ('') into a direction () is



P('') = R (1) P () R(2) ,

where 1 and 2 are the two rotation angles,  the scattering angle between () and (','); P () is the phase matrix for single scattering defined above.

For scalar radiative transfer, expanding the phase function into a series of Legendre polynomials, and using the addition theorem of these polynomials, allows an expansion of the radiance and of all terms of the transfer equation into a Fourier series of azimuth. The equation is therefore splitted into independent equations, one for each Fourier component.

The extension of this approach to the VRTE is not straightforward, but it can be achieved, after some intricate mathematics. The method relies on an expansion of the functions Pij() into generalized Legendre functions, with 6 sets of expansion coefficients; these expansions can be found as Eqs. 9-14 in van der Mee and Hovenier (1990). The element P11, identical to the phase function, is simply developped into Legendre polynomials, with the usual l coefficients. Based on these developments, Deuzé et al. (1989) present the expansion of the phase matrix P(;',') into azimuth series. 

For each azimuth term, the scalar equation is replaced by a vector equation, wich after development, leads to 4 interconnected equations on the quantities I, Q, U, V. When V can be neglected, the 4 equations reduce to 3.

Most methods used for the scalar equation can in principle be extended to the vector equation, but the numerical burden is strongly increased (Lenoble, 1985). 

The first solution developped by Chandrasekhar (1950) is based on the principles of invariance. For an homogeneous Rayleigh atmosphere, the transmission and the reflectance of the atmosphere are expressed in terms of coupled X- and Y-functions, which are tabulated. Although the extension to more realistic cases does not seem promising, the X-, Y- function tables keep their interest as benchmarks for testing new methods.

Among the methods most currently used in the vector form, one find the Gauss-Seidel iteration, the Doubling-Adding, the SOS, and the Monte Carlo methods

5. Rayleigh scattering.

It is well known that molecular Rayleigh scattering strongly polarises the diffuse radiation. For single scattering, radiation scattered at right angle of the incident direction of natural radiation is almost completely polarised, with the direction of vibration perpendicular to the scattering plane. The small depolarisation observed is due to the molecule anisotropy; writing Ix(90°)=dIy(90°), the degree of polarisation is (1-d)/(1+d) at 90°; d, called depolarisation factor, is difficult to measure; the value generally admitted is 0.0279. 

It has long been recognized that neglecting polarisation by Rayleigh scattering (Sekera, 1956; Lacis et al., 1998), for a pure molecular atmosphere, can lead to errors reaching about 10% on the radiance, and varying with the direction. The influence on irradiance is much smaller, because of compensations between the contributions of the different directions. Multiple scattering reduces the polarisation and makes the picture more complex, with the apparition of the neutral points (no polarisation). 

As Rayleigh scattering increases towards short wavelengths, approximately as the fourth inverse power of the wavelength, it is expected that Rayleigh polarisation plays the major role in the UV spectral range, and it seems worth to analyze it in more details, especially in the ozone absorption band, which has been rather neglected up to now.

 . 

5.1. Rayleigh phase matrix.

The elements of the Rayleigh phase matrix are:

P11=3(1+d+(1-d)cos2)/2(2+d),

P12=3(1-d)(cos2-1))/2(2+d),

P22=3(1-d)(1+cos2)/2(2+d),

P33=3(1-d)cos/(2+d),

P44=3(1-2d)cos/(2+d),

P34=0;

this reduces to the more usual expressions:

P11= P22= 3(1+cos2 

P12= 3(cos2 –1) /4,

P33=P44= 3 cos,

P34= 0, 

when neglecting the small molecular depolarisation factor d.

The Stokes parameter V is transfered separately; therefore if the incident radiation is natural (solar beam for the first scattering) or linearly polarised ( multiple scattering), there is no ellipticity for Rayleigh scattering; V=0, and only I, Q, U have to be considered.

All the elements of the matrix are polynomials of order 2 or less; therefore after the expansion into generalized Legendre functions of the Pij functions, and the separation of P(;',') into azimuth series, only the azimuth independent term and two azimuth dependent terms will appear.

5.2. The VRTE for Rayleigh scattering.

Let us write the elements of the radiance vector I= (I, Q,U)T, as


I=I(0)+2I(1)cos()+2I(2)cos2(0),


Q=Q(0)+2Q(1)cos()+2Q(2)cos2(0),


U=2U(1)sin()+2U(2)sin2(0),

where 0 is the sun azimuth; U(0)=0. Using the radiance vectors I(s)=(I(s), Q(s), U(s))T, we have the three matrix equations
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Figure 18. Ratio P22/P11 for mineral particles.
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for s=0,1,2;  is the single scattering albedo,  0 the cosine of the solar zenith angle (SZA), and  the optical depth.

The non zero elements of the 3x3 matrices P(s)=(psij) are given below (de Rooij et al., 1989):


p011 (x,x0) = 3C(3-x2-x02+3x2x02)/8 +(1-C),


p012 (x,x0) = 3C(1-x02)(1-3x2)/8,


p021 (x,x0) = 3C(1-x2)(1-3x02)/8,

p022 (x,x0) = 9C(1-x2)(1-x02)/8,


p111(x,x0) = 3C(1-x2)1/2(1-x02)1/2 xx0 /4,


p112 = p121 = p122 = p111,


p113(x,x0) = -3C(1-x2)1/2(1-x02)1/2 x /4,

p123(x,x0) = -3C(1-x2)1/2(1-x02)1/2 x /4,

p131(x,x0) = -3C(1-x2)1/2(1-x02)1/2 x0 /4,

p132(x,x0) = -3C(1-x2)1/2(1-x02)1/2 x0 /4,

p133(x,x0) = 3C(1-x2)1/2(1-x02)1/2  /4,

p211(x,x0) = 3C(1-x2)(1-x02) /16,

p212(x,x0) = -3C(1-x2)(1+x02) /16,

p213(x,x0) = 3Cx0(1-x2) /8,

p221(x,x0) = -3C(1+x2)(1-x02) /16,

p222(x,x0) = 3C(1+x2)(1+x02) /16,

p223(x,x0) = -3Cx0(1+x2) /8,

p231(x,x0) = 3Cx(1-x02) /8,

p232(x,x0) = -3Cx(1+x02) /8,

p233(x,x0) = 3Cxx0 /4,

where C=2(1-d)/(2+d); C=0.9587, with the above choice of d.

5.3. Results.

For each azimuth term, the VRTE has been solved, using an extension of the SOS code used for the SRTE; the only difference is that, for each s value, three coupled equations with the three parameters I(s), Q(s), and U(s), are solved simultaneously.

Some results are presented below, for the sun vertical plane. The atmosphere model is mid-latitude winter, with no aerosol and a total ozone column of 300 DU; the altitude is 1310 m asl (Briançon station altitude), and the surface reflectance is 5%; two solar zenith angles (SZA=30°, SZA=55°) are considered.

Figures 1.a, .b show the error in percent, committed on the radiance when neglecting polarisation (error=100(radianceSRTE-radianceVRTE)/radianceVRTE), versus the zenith angle of the direction of observation =cos-1 , for SZA=30°; each curve corresponds to a different wavelength. The error is negative on the side of the sun (neglecting polarisation underestimates the radiance), and positive on the opposite side (overestimation), varying approximately between –8% and +8%; maximum and minimum are respectively near 90° of the sun and near the sun direction; the smallest error is near 50° from the sun. With decreasing wavelength from 400 to 300 nm, the error first increases towards short wavelengths, and decreases again after 320 nm, i.e; in the ozone absorption band.

Because of the change of sign with direction of the error on radiance, it is understandable that there is compensation between these errors in the irradiance; in the cases we have considered, the error on irradiance, when neglecting polarisation, is always smaller than 0.5%, and generally below 0.1%.  

Figures 2.a, .b present the corresponding distributions of radiance normalized to the zenith radiance.

On figures 3.a, .b, the degree of polarisation is plotted versus the zenith angle for various zenith angles. The maximum around 60%, is located near 90° from the sun; for single scattering the maximum at 90° would reached 95%, and multiple scatterings have a depolarising effect; therefore polarisation first decreases towards short wavelengths, where the multiple scattering contribution increases; then it increases in the ozone absorption band. On both sides of the sun, the Babinet (above the sun) and Brewster (below the sun) neutral points (no polarisation) appear; between the neutral points, there is an inversion of the direction of polarisation, from perpendicular to parallel to the vertical plane.

Figures 4, 5, and 6 are respectively similar to figures 1, 2, 3, for SZA=55°.

In order to make comparison easier, figures 7, 8, and 9 combine the results for SZA=30° and SZA=55°, at the wavelength of 340 nm.

Figures 10, 11, and 12 present the influence of a surface reflectance R=0.6 (partly snow covered ground), respectively on the radiance error, on the normalized radiance, and on the degee of polarisation. As the surface reflectance is assumed not polarising, its influence is similar to the influence of multiple scattering and reduces the polarisation.

As ozone absorption reduces the number of multiple scatterings, one could expect that increasing the ozone amount, would increase the polarisation, but it is not an important effect, because most of ozone is at high altitude, above the main scattering layer. Figure 13 shows the degree of polarisation at 300 nm and SZA=30°, for a total ozone amount changing between 200 and 300 DU. 

The impact of ozone is more apparent, when the polarisation is plotted versus the wavelength, as in figure 14, for the zenith sky and SZA=55°. 

For comparison, figure 15 presents the polarisation of the nadir sky radiance, as it would be observed by a space-borne instrument. The impact of ozone is larger on backscattered radiance than at the ground level, because the backscattered radiance is mostly due to single scattering in the thin atmospheric layer above the main ozone absorption. In both figures 13 and 14, the small oscillations below 330 nm are due to the oscillations of ozone cross-sections.

6. Aerosol scattering.

6.1. Aerosol phase matrix.

For spherical particles, the phase matrix can easily be computed from the Mie theory; it depends only on the aerosol refractive index (real and imaginary part) and on the particle size distribution. As an example, we show the results, in comparison with Rayleigh scattering, for particles with a real refractive index 1.53 and no absorption, assuming two different size distributions, presented in figure 16; the wavelength is 350 nm, but it has only a small impact on the phase matrix (no impact for Rayleigh), at least in a limited wavelength range. The first element P11, i.e. the phase function, is not represented; after integration over the size distribution, most of its oscillations are smoothed, and the main characteristics is the strong forward peak, increasing for large particles. 

As noticed before, for spherical particles, only the 4 elements P11=P22, P12=P21, P34=-P43, and P33=P44 are different from zero. As the incident solar radiation is not polarised, single scattering leads to linearly polarised radiation, and ellipticity can appear only in multiple scattering; it is therefore small and of limited interest, and we will not consider the element P34. Elements P12, and P33 are presented as their ratio to P11; the absolute value of Pij/P11 is always smaller than or equal to 1. Figure 17.a presents the ratio P12/P11; the scale has been reversed, because the linear degree of polarisation is generally taken as –P12/P11, to be positive when the vibration is perpendicular to the scattering plane; P12/P11 is zero in the forward and backward directions. If  one considers other models of spherical aerosols (de Haan, 1987), there may be larger oscillations, generally between –0.5 and +0.5. Figure 17.b shows the ratio P33/P11 for the two models and for Rayleigh scattering; the ratio varies between 1 in the forward direction and –1 in the backward direction; oscillations generally appear between 120° and 180°.

For non spherical particles, most of the modelling work concerns simple shapes, as spheroids, and circular cylinders, although a lot of work has been recently devoted to irregular shapes (Mishchenko et al., 2000). Laboratory measurements of the elements of the phase matrix have also been performed. Volten (2001), based on the measurements for several mineral aerosols, has proposed an average phase matrix for this kind of particles. His results are limited to the interval 5°-170°, because it is not possible to perform measurements very close to the forward or backward directions; Volten's values of P33/P11 have been added for comparison in figure 17.b; P12/P11 is not shown, because this ratio is always very close to zero for these mineral particles.

For non spherical particles, P22 is no more equal to P11; figure 18 shows the average ratio P22/P11 for mineral particles (Volten, 2001). 

6.2. Influence of aerosols on sky radiance.

In the previous section, we have seen how much the aerosol phase matrix is variable, and depends on the type of aerosols. Two opposite situations have to be considered:

- At short wavelengths, as in UV, the aerosol contribution, both to the total radiance and to the polarised radiance, is only a fraction of the very large molecular contribution; the presence of aerosols acts as a perturbation, which slightly modifies the features of Rayleigh polarisation, and generally reduces the maximum of polarisation. This is confirmed by observations, when the turbidity increases (Sekera, 1956; Coulson, 1988).

- At longer wavelengths, as in red and near infrared, although molecular scattering still dominates, it becomes possible to retrieve the main aerosol characteristics. Using skylight polarisation strongly improves the retrieval of aerosols from ground based observations (Vermeulen et al., 2000); it is also currently used in satellite remote sensing of aerosols (Herman et al., 1997).   

7. Conclusion.

Radiative transfer in a scattering atmosphere can be handled correctly only using a vector equation, which takes into account the polarisation effects of scattering. Especially in UV and for a very clear atmosphere, because molecular scattering is dominant and has a strong polarising effect, the error committed on radiance can be rather large, when radiance is computed with the scalar radiati

ve transfer equation. This error varies with the direction of observation, with an underestimation of about 8% near the direction of the sun, and an overestimation of about 8% near 90° from the sun. Therefore the radiance distribution over the sky is strongly distorded. On irradiance, the error is negligible, due to compensation between the contributions of the different directions.

The degree of polarisation can reach about 60% at 90° from the sun; it is reduced from its single scattering value (close to 90%) by multiple scattering. It first slightly decreases toward short wavelengths, and then increases in the ozone absorption band; this behaviour being related to the variation with wavelength of the multiple scattering contribution. Surface reflection and atmospheric turbidity tend to reduce the polarisation and its impact on radiance. 
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Figure captions.

Figure 1.a. Error on radiance when neglecting polarisation for wavelengths between 300 and 325 nm; SZA=30°.

Figure 1.b. Same as figure 1.a for wavelengths between 330 and 400 nm.

Figure 2.a. Radiance normalized to zenith radiance for wavelengths between 300 and 325 nm; SZA=30°.

Figure 2.b. Same as figure 2.a for wavelengths between 330 and 400 nm.

Figure 3.a. Degree of polarisation for wavelengths between 300 and 325 nm; SZA=30°.

Figure 3.b. Same as figure 3.a for wavelengths between 330 and 400 nm.

Figure 4.a. Same as figure 1.a for SZA=55°.

Figure 4.b. Same as figure 1.b for SZA=55°.

Figure 5.a. Same as figure 2.a for SZA=55°.

Figure 5.b. Same as figure 2.b for SZA=55°.

Figure 6.a. Same as figure 3.a for SZA=55°.

Figure 6.b. Same as figure 3.b for SZA=55°.

Figure 7. Comparison of error due to neglecting polarisation at 340 nm, for SZA=30° and SZA=55°.

Figure 8. Comparison of normalized radiance at 340 nm, for SZA=30° and 55°.

Figure 9. Comparison of degree of polarisation at 340 nm, for SZA=30° and 55°.

Figure 11. Influence of surface reflectance on the error due to neglecting polarisation for 340 nm and SZA=55°.

Figure 12. Influence of surface reflectance on the degree of polarisation for 340 nm and SZA=55°.

Figure 13. Influence of ozone amount on the degree of polarisation for 300 nm and SZA=30°.

Figure 14. Zenith sky degree of polarisation for SZA=55° and different amounts of ozone.

Figure 15. Nadir backscattered degree of polarisation for SZA=55° and different amount of ozone.

Figure 16. Size distribution for two aerosol models (normalized to 1).

Figure 17.a. Ratio P12/P11 for the two aerosol models of figure 16, and for Rayleigh.

Figure 17.b. Ratio P33/P11 for the two spherical aerosol models of figure 16, for Rayleigh, and for mineral aerosols.

Figure 18. Ratio P22/P11 for mineral particles.
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Figure 1.a. Error on radiance when neglecting polarisation

for wavelengths between 300 and 325 nm.  SZA=30°.
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Figure 1.b. Same as figure 1.a. for wavelengths 

between 330 and 400 nm.
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Figure 2.a. Radiance normalized to zenith radiance

for wavelengths between 300 and 325 nm. SZA=30°.

300

305

310

315

320

325

Normalized radiance

teta (degree)

SZA=30°


[image: image6.wmf]0.5

1.0

1.5

2.0

2.5

3.0

-80

-40

0

40

80

Figure 2.b. Same as figure 2.a. for wavelengths

 between 330 and 400 nm
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Figure 3.a. Degree of polarisation for wavelengths

 between 300 and 325 nm;  SZA=30°.
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Figure 3.b. Same as figure 3.a for wavelengths

 between 330 and 400 nm.
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Figure 4.a. Same as figure 1.a. for SZA=55°.
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Figure 4.b. Same as figure 1.b. for SZA=55°.
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Figure 5.a. Same as figure 2.a. for SZA=55°.
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Figure 5.b. Same as figure 2.b. for SZA=55°.
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Figure 6.a. Same as figure 3.a. for SZA=55°.
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Figure 6.b. Same as figure 3.b. for SZA=55°.
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Figure 7. Comparison of error due to neglecting polarisation 

at 340 nm, for SZA=30° and 55°.
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Figure 8. Comparison of normalized radiance at 340 nm 

for SZA=30° and 55°.
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Figure 9. Comparison of degree of polarisation at 340 nm

for SZA=30° and 55°.
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Figure 10. Influence of surface reflectance on the error

 due to neglecting polarisation for 340 nm and SZA=55°.
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Figure 11. Influence of surface reflectance 

on normalized radiance for 340 nm and  SZA=55° .

R=0.05

R=0.60

Normalized radiance

teta (degree)


[image: image20.wmf]0

10

20

30

40

50

60

70

-80

-40

0

40

80

Figure 12. Influence of surface reflectance 

on the degree of polarisation for  340 nm and  SZA=55°.
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Figure 13. Influence of ozone amount on 

the degree of polarisation  for 300 nm and  SZA=30°.
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Figure 14. Zenith sky degree of polarisation for SZA=55°

and different amounts of ozone.
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Figure 15. Nadir backscattered degree of polarisation

for SZA=55° and different amounts of ozone. 
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Figure 16. Size distribution 

 for two aerosol models (normalized to 1) .
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Figure 17.a. Ratio P12/P11 for the two aerosol models of figure 16

 and for Rayleigh.
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Figure 17.b. Ratio P33/P11 for the two spherical aerosol models

 of figure 16, for Rayleigh, and for mineral aerosols.
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