

551, 584.4;

106/2363 FÜR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITAT HANNOVER HERRENHXUSER STR. 2 - 3000 HANNOVER 21

Vegetation and the Atmosphere

Volume 2 Case Studies EDITED BY

J. L. MONTEITH

Department of Physiology and Environmental Studies, University of Nottingham, School of Agriculture, Sutton Bonington, Loughborough, England

1976

ACADEMIC PRESS London · New York · San Francisco

A Subsidiary of Harcourt Brace Jovanovich, Publishers

Contents

CONTRIBU	JT(ORS						V
PREFACE							\$ 1	vii
SYMBOLS			۰.					ix

1. Temperate Cereals

O. T. DENMEAD

١.	Introduction								1
11.	Radiation.							N	2
III.	Transfer proces	ses		.*					8
IV.	Evaporation								16
V.	Carbon dioxide	exch	nange						21
Ref	erences .			č.,	<u>,</u> 1				30

2. Maize and Rice

Z. UCHIJIMA

١.	Introduction		17							33
11.	Radiation char	acteris	tics	of ma	ize ar	nd rice	e fields			34
III.	Wind regime at	oove a	nd v	vithin	canop	oies	× .			43
	Heat and water									49
V.	Carbon dioxide	e balar	ice							55
VI.	Conclusions									61
Ref	erences .								-	62

3. Sugar Beet and Potatoes

K. W. BROWN

I.	Introduction								65
II.	Crop micro-climate .				•				66
111.	Momentum balance .			•					69
IV.	Heat and water balance	•							72
V.	Carbon dioxide balance						~		79
Ref	erences							. • X	85

CONTENTS

4. Sunflower

B	SA	UG	IFR
υ.	0/ 1		

ł.	Introduction								87
11.	Radiation and c	anop	y struc	cture				ł.	 89
111.	Momentum								94
	Heat and water								97
	Carbon dioxide								103
	Conclusion								
Ref	erences .						÷.,		118

5. Cotton

G. STANHILL

1.	Introduction					,		121
11.	Transfer process	ses						125
111.	Conclusions		÷					 147
Ref	erences .					۰.	•	148

6. Townsville Stylo (Stylosanthes humilis H.B.K.)

C. W. ROSE, J. E. BEGG and B. W. R. TORSSELL

1:	Introduction					•				151
11.	Studies in the m	nain	growth	n perio	bd					153
111.	Growth models									157
IV.	Ecology of the	past	ure							163
V.	Micrometeorol	ogy a	and eco	ologica	al obje	ctives				167
	erences .									168

7. Coniferous Forest

P. G. JARVIS, G. B. JAMES and J. J. LANDSBERG

1.	Introduc	ction					. × .			171
11.	Radiatic	on.								172
III.	Moment	um								186
IV.	Heat an	d water	balar	ice						199
V.	Carbon	dioxide								223
App	pendix									234
Ref	erences									236

8. Deciduous Forest JU. L. RAUNER

I.	Architecture of leaf canopy.						241
11.	Radiation characteristics of deci	duoi	is fore	ests			245

xvi

CONTENTS	xvii
 III. Aerodynamic characteristics of leaf canopies IV. Heat balance of leaf canopies V. Photosynthesis and transpiration efficiency of deciduous forests 	. 253 . 257 . 262
9. Carbon Dioxide Exchange and Turbulence in a Costa Tropical Rain Forest	Rican
L. H. ALLEN, JR. and E. R. LEMON	
II. Micrometeorological measurements	. 265 . 266 . 267 268 . 278 . 304 . 306
10. Citrus Orchards	
J. D. KALMA and M. FUCHS	
 I. Plant characteristics and macro-climate features II. Recent studies of the micro-environment of citrus orchards III. Frost protection in citriculture IV. Means of controlling the solar radiation climate in citrus orchards References 	. 309 . 312 . 317 . 320 . 326
11. Swamps	
E. LINACRE	
I. Introduction I. Introduction I. Introduction II. Methods of measuring evaporation III. Introduction III. Introduction III. Evaporation rates III. Introduction III. Introduction IV. The rate of growth of swamp plants III. Introduction III. Introduction	. 329 . 332 . 335 . 343
V. Conclusions	. 343 . 344
Acknowledgements	. 344 . 344
12. Grassland	
E. A. RIPLEY and R. E. REDMANN	
I. Introduction .	. 351 . 360 . 372 . 376 . 386 . 396

CONTENTS

xviii

13. Tundra

M. C. LEWIS and T. V. CALLAGHAN

I.	Introduction										2	399
11.	Radiation.				•		· •					401
111.	Momentum		÷		۰.			•		\mathbf{X}	e i	406
IV.	Heat and water											408
V.	Carbon dioxide				. '							420
VI.	The Tundra con	nplex	and a	dapta	tion		•			•		427
Ack	nowledgements								,			430
Ref	erences .				i i							430
Sub	ject Index .			•					•			435

1. Temperate Cereals

O. T. DENMEAD

Division of Environmental Mechanics, CSIRO, Canberra, Australia

Ι.	Introduction		9. •						×	1
11.										2
	A. Climatology .									2
	B. Radiation and leaf cond	luctan	ce							7
III.	Transfer processes .									8
	A. The similarity assumpti							•		8
	B. Transfer within the can	ору			÷ .					11
	C. Transfer at leaf surfaces				. ``					13
IV.	Evaporation									16
	A. Water transport in the	plant	ā.					•		16
	B. Leaf-water relations		÷ .							18
	C. Transpiration and stor	atal c	losure							19
	D. Water relations and pla	nt gro	wth		•1					21
V.	Carbon dioxide exchange						÷			21
	A. Sources of CO_2 .		. 1							22
	B. Assimilation, respiration	n and	the ca	rbon l	balanc	ce		•].		24
	C. Effects of environment									27
Refe	erences									30

I. INTRODUCTION

The case studies reported in this chapter have been chosen to fulfil four broad aims: (i) to explore important aspects of whole plant physiology for temperate cereals in the field, and the influence of the physical environment on them; (ii) to illustrate the potentialities of physical methodology for studying plant growth processes; (iii) to provide field data which will allow comparison and extrapolation between controlled and outdoor environments; and (iv) to provide mechanistic or empirical descriptions of the climatology of temperate cereals for use in model analyses or estimating procedures. A particular concern has been to examine physical processes and their related physiological causes or consequences *within* the canopy.

1

2. Maize and Rice

Z. UCHIJIMA

Division of Meteorology, National Institute of Agricultural Sciences, Nishigahara, Tokyo, Japan

I. Introduction					•		33
II. Radiation characteristics of maize and rice fi	elds						34
A. Radiation balance of whole stands .							34
B. Optical properties of leaves .				•			37
C. Radiation transfer within canopies .						÷ .	38
III. Wind regime above and within canopies							43
A. Wind profile above and within canopies						. 1	43
B. Aerodynamic characteristics of whole sta	nds						44
C. Turbulence within canopies .							47
IV. Heat and Water Balance	,						49
A. Heat balance of whole stands .						. '	49
B. Turbulent transfer of heat and water vap	our w	ithin o	canopi	ies			52
V. Carbon dioxide balance							55
A. Photosynthetic behaviour of leaves .							55
B. Carbon dioxide balance of whole stands	. ×			•	× 7		57
C. Carbon dioxide transfer within crop cano	opies				. `		59
D. Dry matter production							60
VI. Conclusions							61
References							62

I. INTRODUCTION

According to the FAO Production Yearbook, world acreages of rice and maize planted in 1970 were about 136 million and about 111 million hectares, respectively. The world rice output (unhulled) reached 300 million tons and the maize output was about 270 million tons. Most inhabitants of the Far East and south-east Asian countries live on rice and the rice exported from these districts forms about 90% of the world output. Maize, on the other hand, is a source of food for animals as well as for man and about 70% of the world output is produced in North American and Asian countries.

3. Sugar Beet and Potatoes

K. W. BROWN

Department of Soil and Crop Sciences, Texas A and M University, College Station, Texas, U.S.A.

1.	Introduction .							×.,	65
11.	Crop micro-climate			÷					66
III.	Momentum balance	e .							69
IV.	Heat and water bala	ance					1		72
	A. Stomatal behavi	iour			 ÷ .				72
	B. Plant-water rela	tions							74
	C. Energy balance								76
V.	Carbon dioxide bala	ance							79
	A. Photosynthesis								79
	B. Diurnal pattern	of CO ₂	flux						81
	C. Dry matter proc	luction							83
Ref	erences	. ~							85

I. INTRODUCTION

The micrometeorological and physiological characteristics of sugar beet and potatoes have been investigated by many researchers throughout the world. Most investigations lack the complete set of measurements needed to calculate fluxes of momentum, sensible and latent heat and CO_2 , and their dependence on soil- and crop-water relations. There are sufficient observations on these two crops, however, to attempt a complete characterization through a synthesis of the available information.

Sugar beét and potato crops have several common characteristics which may be compared. Both crops canopies are typically 50 to 60 cm tall. Provided the row spacing is 60 cm or closer, the foliage will generally form a complete soil cover by mid-season. Both crops display their leaves at an entire range of angles and have been reported to develop leaf area indexes of six or greater. These factors may lead to similar radiation and aerodynamic

4. Sunflower

B. SAUGIER

Section d'Eco-Physiologie du C.E.P.E.—Louis Emberger, Centre National de la Recherche Scientifique, Montpellier, France

١.	Introduction												87
11.	Radiation and	canop	y stru	cture									89
	A. Penetration	of rad	liation	1									89
	B. Absorption	coeffi	cients	and l	eaf ar	rangen	nent						90
	C. Optical pro	pertie	s of lea	aves									
III.	Momentum												92
	A. Wind profil	e in th	ne can	ору				:					94
	B. Momentum	trans	fer in	the ca	anopy								94
	C. Boundary-la	ayer r	esistar	nce of	leaves	s.							95
IV.	Heat and water	r.											97
	A. Temperatur	e and	humi	dity p	orofiles	S		. '					97
	B. Evaporation	n mea	surem	ents l	by ene	rgy ba	lance	and c	uvette	meth	ods		97
	C. Sensible and												98
	D. Stomatal be	havio	ur; wa	ater s	tatus i	n plan	t and	soil					101
۷.	Carbon dioxide	e											102
	A. Carbon dio	xide p	orofiles	5									103
	B. Carbon dio	xide e	xchan	ges of	the w	hole v	egetat	ion by	profi	le and	cuvet	te	103
	methods												107
	C. Dry matter	produ	action	, carb	on an	d ener	gy con	ntent			. *		109
	D. Carbon dio												111
	E. Photosynth	etic b	ehavio	our of	leave	s .							112
VI.	Conclusion												116
Ack	nowledgments	2					.					'a	117
Refe	erences .												118

I. INTRODUCTION,

Sunflower (*Helianthus annuus* L.) is a plant native to North America. Introduced in Europe in 1596, it is now grown mainly in the USSR, Argentina,

5. Cotton

G. STANHILL

Agricultural Research Organization, The Volcani Centre, Bet Dagan, Israel

	١.	Introduction							. 、			121
		A. Anatomy, pl							•			121
		B. Distribution	of an	ea and	d yield	d					÷ ^	124
	II.	Transfer process	ses			. *					к. —	125
		A. Radiation				•						125
		B. Momentum					÷					132
		C. Water				× 15						133
		D. Heat .								<i></i>		139
		E. Carbon diox	ide				:					143
I	II.	Conclusions								÷.		147
		References										148

I. INTRODUCTION

A. Anatomy, Physiology and Phenology

The two most widely cultivated species of cotton, Gossypium hirsutum L. and G. barbadense are allopolyploids (n = 26) of central and South American origin. The two other commercially grown species, G. herbaceum and G. arboreum, are diploids (n = 13), found in Africa and western and central Asia and in India, south-east Asia and the Far East respectively.

All four cultivated species are perennial or biennial in habit but the crop is nørmally cultivated as an annual. The growth habit of the cotton plant is complex. Apical meristems, which can give rise to either vegetative (monpodia) or flowering (sympodia) branches, develop in the axil of each cotyledon,

Contribution from the Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel. 1973 Series, No. 170-E.

6. Townsville Stylo (*Stylosanthes humilis* H.B.K.)

C. W. ROSE, J. E. BEGG, and B. W. R. TORSSELL Division of Land Use Research, CSIRO, Canberra, Australia

I.	Introduction								151
11.	Studies in the n	nain	grow	th per	iod				153
HI.	Growth models	s.							157
	A. The model of	of Re	ose et	al. (19	972b)				157
	B. The model of	of M	cCow	n (19	73).				162
IV.	Ecology of the	past	ure						163
	Micrometeorol								167
Ack	nowledgments								168
Ref	erences .								168

I. INTRODUCTION

Townsville stylo, previously known as Townsville lucerne, is a tropical annual legume, native to central and southern America, and adapted to summer rainfall climates. Since its chance introduction to northern Australia in the early 1900s, Townsville stylo (hereafter contracted to T.S.) has become a well-established alien in tropical Australia. Its early establishment, spread, and general agronomic characteristics have been reviewed by Humphreys (1967). In the mid 1960s it had not been widely exploited and Humphreys concluded that, although the basic agronomic information had been available for some time, the financial structure of the beef industry in northern Australia did not favour large-scale investment in pasture improvement.

Since then, economic conditions became more favourable and the total area sown to T.S. in the Northern Territory rose over the last six years from

7. Coniferous Forest

P. G. JARVIS, G. B. JAMES and J. J. LANDSBERG

Department of Botany, University of Aberdeen, Aberdeen, Scotland

1.	Introduction									171
: II.	Radiation.									172
	A. Exchanges	by can	opies				. 1			173
	B. Exchanges	within	the c	anopy					• .	177
	C. Exchanges	by leav	ves							183
III.	Momentum									186
	A. Aerodynan									186
	B. Aerodynan	nic cha	racter	ristics of	of shoe	ots				192
	C. Momentun	n excha	ange v	vithin	canop	ies		. 2		 196
IV.	Heat and wate	r balar	ice							199
	A. Partitionin	g of en	ergy l	by can	opies					199
	B. Exchanges							. '		213
	C. Exchange of									219
V.	Carbon dioxid									223
	A. Exchange b									223
	B. Exchanges	within	cano	pies						227
	C. Photosynth						÷			230
An	pendix .									234
										236
						•	•			200

I. INTRODUCTION

There have been many descriptive studies of the micrometeorology and environmental physiology of coniferous forests, well summarized in Geiger's (1965) book and in recent reviews by Reifsnyder and Lull (1965) and

8. Deciduous Forests

JU. L. RAUNER

Institute of Geography, Academy of Sciences of the U.S.S.R., Moscow

I. Architecture of leaf canopy					241
II. Radiation characteristics of deciduous forests.					245
III. Aerodynamic characteristics of leaf canopies .	•				253
IV. Heat balance of leaf canopies					257
V. Photosynthesis and transpiration efficiency of de	eciduo	us for	ests		262

This chapter presents the essential characteristics of the micrometeorological regime of deciduous forests. The examples to be cited refer to natural and cultivated forests in the zone of broad-leaved forests (the Moscow region) and in the central forest-steppe of the Russian plain (the Kursk region).

The micrometeorological regime has been defined by complex heatbalance measurements analysed for the following purposes: (1) definition of the upward and downward fluxes of radiation including net radiation above the crown and within the canopy at different levels; (2) definition of the vertical profiles of temperature, air humidity and wind velocity above the crown and within the canopy as well as of the temperature of the surface and upper layers of the soil; (3) definition of the water content in the root zone of the soil and of surface evaporation; (4) specification of structural parameters of the forest stand and of the vertical profile of the leaf and non-leaf surfaces of the forest and grass canopy.

A detailed account of all techniques of measurement and calculation and a full description of the deciduous forests where the measurements were made was presented in a book by Rauner (1972) and the principal results summarized here are taken from this source.

I. ARCHITECTURE OF LEAF CANOPY

The geometrical structure peculiar to a plant canopy determines its interaction with fluxes of energy. This structure, in turn, can be evaluated

9. Carbon Dioxide Exchange and Turbulence in a Costa Rican Tropical Rain Forest

L. H. ALLEN, JR. and E. R. LEMON

USDA Microclimate Investigations, Bradfield Hall, Cornell University, Ithaca, New York, U.S.A.

	Description of the forest				265
11.	Micrometeorological measurements .				266
111.	Leaf chamber measurements				267
IV.	Carbon dioxide flux model				268
	A. Micrometeorological computations .				271
	B. Results of micrometeorological computations				272
	C. Turbulence and its effects on carbon dioxide ex-	chang	e		276
V.	Simulation of carbon dioxide exchange.				278
	A. Description of the SPAM model				279
	B. Modifications of SPAM				282
	C. Inputs for cabon dioxide exchange simulations				286
	D. Results of carbon dioxide exchange simulations				291
	E. Diurnal and annual carbon dioxide budgets				297
	F. Photosynthesis of a Cambodian forest				303
VI.	Summary and conclusions				304
Ref	erences				306
-					

I. DESCRIPTION OF THE FOREST

In November 1967, micrometeorological measurements were made in a regrowth tropical rain forest near Turrialba, Costa Rica (Lemon *et al.*, 1970; Allen *et al.*, 1972). The objectives were to describe the micro-climate of this forest system and to obtain flux densities of carbon dioxide, water vapour, and sensible heat to or from the forest. Concurrently, Stephens and Waggoner (1970) used leaf chamber techniques to determine the relation between net photosynthesis and light for leaves of several of the species prevalent in the forest.

10. Citrus Orchards

J. D. KALMA and M. FUCHS

Division of Land Use Research, CSIRO, Canberra, Australia, and A.R.O., The Volcani Center, Bet Dagan, Israel

١.	Plant characteristics and macro-climatic	e features					309
11.	Recent studies of the micro-environment	t of citrus	orcha	rds			312
	A. Radiative transfer processes				. `		312
	B. Momentum transfer					· •	314
	C. Transfer of latent and sensible heat .			÷.			315
III.	Frost protection in citriculture						317
	A. Frost types						317
	B. Protection methods						 317
	C. Environmental studies on frost prote	ction for	citrus				318
IV.	Means of controlling the solar radiation	climate i	in citru	s orch	ards		320
	A. Interception of solar radiation .	× .					321
	B. Changing the reflectivity of the soil a	nd the co	over der	nsity			323
Ref	erences						326

The objectives of this chapter are threefold. Firstly, a brief outline is given of some of the phenological and macro-climatic features of citrus. Secondly, recent studies on the micro-environment of citrus are reviewed, with particular emphasis on the transfer of radiation, momentum, latent and sensible heat. Finally, the practical importance of micro-climatology is discussed in sections on frost protection in citriculture and on means of controlling the solar radiation climate in citrus orchards.

I. PLANT CHARACTERISTICS AND MACRO-CLIMATIC FEATURES

Citrus is a typical mesophyte, growing in tropical and sub-tropical regions. The genus is characterized by glossy, evergreen leaves without any specialized

11. Swamps

E. LINACRE

School of Earth Sciences, Macquarie University, Sydney, Australia

١.	Introduction	•								329
	A. Terminology	y								329
	B. Vegetation									330
	C. Extent.									331
	D. Significance								` .	331
	E. Previous stu	dies								332
11.	Methods of mea	asurin	g evar	oratio	on					332
	A. Water-balan	ice me	ethod							332
	B. Swamp vege	tation	in tai	nks						334
	C. Bowen ratio	meth	od							334
	D. Other metho	ods								335
111.	Evaporation rat	tes								 335
	A. Effect of adv	vection	1.							335
	B. The clothes-	line ef	ffect							336
`	C. Effect of clin	nate								337
	D. Effect of kin	d of v	egetat	ion						338
	E. Effect of can	opy s	tructu	re						338
	F. Relationship	to in	comin	g rad	iation					339
	G. Comparison									340
	H. Comparison									340
IV.	The rate of grow									343
	Conclusions					а v				343
Ack	nowledgments					•				344
Ref	erences .									344

I. INTRODUCTION

A. Terminology

The word 'swamp' has been applied to the forested Everglades area of Florida, to marshes, bogs, reed fields, and also to Canadian muskeg. These areas differ greatly from each other in the extent to which the water surface

12. Grassland

E. A. RIPLEY and R. E. REDMANN

Department of Plant Ecology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

1.	Introduction										351
	A. The North A	American	n grassl	ands							351
	B. Vegetation a	and soil	of the l	Matado	r area						353
	C. Review of gi	rassland	micro-	climate	studie	s.					358
	D. The Internation	tional B	iologica	al Prog	ramme	and	the N	Aatado	or pro	ject	359
II.	Radiation.										360
	A. Fluxes abov	e the car	nopy								360
	B. Fluxes withi	n the ca	nopy								366
-	C. Single leaf ra	adiative	proper	ties.							370
III.	Momentum				۰.						372
	A. Exchange of	the who	ole stan	d.			÷				372
	B. In-canopy n	nomentu	ım tran	sfer							374
IV.	Heat and water								ι.		376
	A. Fluxes abov	e the car	nopy		· .						376
	B. Lysimetry										381
	C. Fluxes within	n the ca	nopy					. =			381
	D. Individual le	eaf excha	anges								383
V.	Carbon dioxide										386
	A. Flux above	the canc	py and	soil res	spiratio	on					386
	B. Flux within	the cano	ору.								388
	C. Photosynthe	esis of si	ngle lea	ves and	d of the	e swa	rd				390
Ack	nowledgments										395
Ref	erences .							• •			396

Canadian Committee for the International Biological Programme Contribution No. 199.

13. Tundra

M. C. LEWIS and T. V. CALLAGHAN

Institute for Plant Ecology, University of Copenhagen, Denmark, and The Nature Conservancy, Merlewood Research Station, Grange-over Sands, England

Ι.	Introduction												399
П.	Radiation												401
	A. Radiation	balan	ce										401
	B. Canopy de	evelop	cce .										
III.	Momentum		<u>.</u>										406
IV.	Heat and wate	er											408
	A. Temperatu	ire											408
	B. Water												409
	C. Energy bal	lances	of wh	ole sta	ands								410
	D. Soil proces	sses											414
	E. Transpirat	ion a	nd wat	er pot	ential	S							415
	F. Plant temp	peratu	res, gr	owth	and d	evelop	ment						416
V.	Carbon dioxid	de						,					420
	A. Carbon di	oxide	fluxes	for wl	nole st	tands			•				420
	B. Photosynt	hesis a	and re	spirati	on								423
	C. Primary p	roduc	tion			•							426
VI.	The Tundra c	omple	ex and	adapt	ation								427
Acknowledgments									430				
Ref	erences .		÷		,		÷						430

I. INTRODUCTION

Tundra is a term originally used for treeless plateau areas in northern Finland but its meaning has become enlarged to describe the whole of the vegetation zone lying between the northern limit of the boreal forest and the permanent ice caps (Pruitt, 1970); it includes a land area of 6 million km² mainly lying above 65° N latitude (Bliss, 1971). Fragmentary areas of tundra are also found on the coast and adjacent islands of Antarctica as well as at high altitudes in all latitudes (Greene and Longton, 1970).