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I. INTRODUCTION

The case studies reported in this chapter have been chosen to fulfil four
broad aims: (i) to explore important aspects of whoIe plant physiology for
temperate cereals in the field, and the influence of the physical environment
on them; (ii) to illustrate the potentialities of physical methodology for
studying plant growth processes ; (iii) to provide field data which will allow
comparison and extrapolation between controlled and outdoor environ-
ments; and (iv) to provide mechanistic or empirical descriptions of the
climatology of temperate cereals for use in model analyses or estimating
procedures. A particular concern has been to examine physical processes
and their related physiological causes or consequences within the canopy.
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I. INTRODUCTION

According to the FAO Production Yearbook, world acreages of rice and
maize plan ted in 1970were about 136million and about 111million hectares,
respectively. The world rice output (unhulled) reached 300 million tons and
the maize output was about 270 million tons. Most inhabitants of the Far
East and south-east Asian countries live on rice and the rice exported from
these districts forms about 90 % of the world output. Maize, on the other
hand, is a source of food for animals as weil as for man and about 70 % of
the world output is produced in North American and Asian countries.
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I. INTRODUCTION

The micrometeorological and physiological characteristics of sugar beet and
potatoes have been investigated by many researchers throughout the world.
Most investigations lack the complete set of measurements needed to cal-
culate fluxes of moment um, sensible and latent heat and CO2, and their
dependence on soil- and crop-water relations. There are sufficient obser-
vations on these two crops, however, to attempt a complete characterization
through a synthesis of the available information.

Sugar beet and potato crops have several common characteristics which
may be compared. Both crops canopies are typically 50 to 60 cm tall. Pro-
vided the row spacing is 60 cm or closer, the foliage will generally form a
complete soil cover by mid-season. Both crops display their leaves at an
entire range of angles and have been reported to develop leaf area indexes
ofsix or greater. These factors may lead to similar radiation and aerodynamic
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11. INTRODUCTION.

Sunftower (Helianthus annuus L.) is a plant native to North America. Intro-
duced in Europe in 1596, it is now grown mainly in the USSR, Argentina,
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I. INTRODUCTION

A. Anatomy, Physiology and Phenology

The two most widely cultivated species of cotton, Gossypium hirsutum L.
and G. barbadense are allopolyploids (n = 26) of central and South American
origin. The two other commercially grown species, G. herbaceum and

/G. arboreum, are diploids (n = 13), found in Africa and western and central
Asia and in India, south-east Asia and the Far East respectively.

All four cultivated species are perennial or biennial in habit but the crop
is nermally cultivated as an annual. The growth habit of the cotton plant is
complex. Apicaf meristems, which can give rise to either vegetative (mon-
podia) or flowering(sympodia) branches, develop in theaxil of each cotyledon,

Contribution from the Agricultural Research Organization, Volcani Centre, Bel Dagan,
IsraeL 1973 Series, No. 170--E.

121
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I. INTRODUCTION

Townsville stylo, previously known as Townsville lucerne, is a tropical
annual legurne, native to central and southern America, and adapted to
summer rainfall climates. Since its chance introduction to northern Australia
in the early 1900s,Townsville stylo (hereafter contracted to T.S.) has become

I a well-established alien in tropical Australia. Its early establishment, spread,
and general agronomie characteristics have been reviewed by Humphreys
(l~67). In the mid 1960s it had not been widely exploited and Humphreys
concluded that, although the basic agronomie information had been available
for some time, the financial structure of the beef industry in northern Australia
did not favour large-scale investment in pasture improvement.

Since then, economic conditions became more favourable and the total
area sown to T.S. in the Northern Territory rose over the last six years from

151
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I. INTRODUCTION

There have been many descriptive studies of the micrometeorology and
environmental physiology of coniferous forests, weil summarized in
Geiger's (1965) book and in recent reviews by Reifsnyder and Lull (1965)and

171
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8. Deciduous Forests

JU. L. RAUNER
Institute of Geography, Academy of Seiences of the U.S.S.R., Moscow

This chapter presents the essential characteristics ofthe micrometeorological
regime of deciduous forests. The examples to be cited refer to natural and
cultivated forests in the zone of broad-leaved forests (the Moscow region)
and in the central forest-steppe of the Russian plain (the Kursk region).

The micrometeorological regime has been defined by complex heat-
balance measurements analysed for the following purposes : (1) definition
of the upward and downward fluxes of radiation including net radiation
above the crown and within the canopy at different levels; (2) definition of
the vertical profiles of temperature, air humidity and wind velocity above
the crown and within the canopy as weil as of the temperature of the surface
and upper layers of the soil; (3) definition of the water content in the root
zone of the soil and of surface evaporation; (4) specification of structural
parameters of the forest stand and of the vertical profile of the leaf and

I non-leaf surfaces of the forest and grass canopy.
A detailed account of all techniques of measurement and calculation and

a full description of the deciduous forests where the measurements were
made was presented in a book by Rauner (1972) and the principal results
summarized here are taken from this source.

I. ARCHITECTURE OF LEAF CANOPY

The geometrical structure peculiar to a plant canopy determines its inter-
action with fluxes of energy. This structure, in turn, can be evaluated

241
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I. DESCRIPTION OF THE FOREST

In November 1967, micrometeorological measurements were made in a
regrowth tropical rain forest near Turrialba, Costa Rica (Lernon et al., 1970;
Allen et al., 1972).The objectives were to describe the micro-climate of this
forest system and to obtain flux densities of carbon dioxide, water vapour,
and sensible heat to or from the forest. Concurrently, Stephens and Waggoner
(1970) used leaf chamber techniques to determine the relation between net
photosynthesis and light for leaves of several of the species prevalent in the
forest.
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The objectives of this chapter are threefold. Firstly, abrief outline is given
of some of the phenological and macro-climatic features of citrus. Secondly,
recent studies on the micro-environment of citrus are reviewed, with par-
ticular emphasis on the transfer of radiation, momentum, latent and sensible
heat. Finally, the practical importance of micro-climatology is discussed
in sections on frost protection in citriculture and on means of controlling
the solar radiation climate in citrus orchards.

I. PLANT CHARACTERISTICS AND MACRO-CLIMATIC
FEATURES

Citrus is a typical mesophyte, growing in tropical and sub-tropical regions.
The genus is characterized by glossy, evergreen leaves without any specialized
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I. INTRODUCTION

A. Terminology

The word 'swamp' has been applied to the forested Everglades area of
Florida, to marshes, bogs, reed fields, and also to Canadian muskeg. These
areas differ greatly from each other in the extent to which the water surface

329
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I. INTRODUCTION

Tundra is a term originally used for treeless plateau areas in northern
Finland but its meaning has become enlarged to describe the whole of the
vegetation zone lying between the northern limit of the boreal forest and the
permanent ice caps (Pruitt, 1970); it includes aland area of 6 million km2

mainly lying above 65° N latitude (Bliss, 1971).Fragmentary areas of tundra
are also found on the coast and adjacent islands of Antarctica as well as
at high altitudes in alliatitudes (Greene and Longton, 1970).
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