Oceanatmosphere interaction and climate modelling

Boris A.Kagan

CAMBRIDGE ATMOSPHERIC AND SPACE SCIENCE SERIES

Ocean–Atmosphere Interaction and Climate Modelling

Boris A. Kagan P. P. Shirshov Institute of Oceanology, St Petersburg

Translated by Mikhail Hazin

303/3820 INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITÄT HANNOVER HERRENHÄUSER STR. 2 - 30419 HANNOVER

Contents

n	C
Prej	ann
1 1 61	uce
5	

1	Prel	iminary information	1
	1.1	Definition of the climatic system	1
	1.2	Scales of temporal variability and its mechanisms	5
	1.3	Predictability and non-uniqueness	11
	1.4	Methods of experimental research	20
		1.4.1 Ground-based measurements	20
		1.4.2 Satellite measurements	30
2	Pres	sent state of the climatic system	45
	2.1	Initial information	45
	2.2	Mass budget	46
	2.3	Heat budget	49
	2.4	Moisture budget	61
	2.5	Energy budget	70
	2.6	Angular momentum budget	86
	2.7	Carbon budget	92
3	Sma	Ill-scale ocean-atmosphere interaction	107
	3.1	Surface atmospheric layer	107
	3.2	Vertical distribution of the mean velocity over an	109
		immovable smooth surface: viscous sublayer;	
		logarithmic boundary layer	
	3.3	Vertical distribution of the mean velocity over an immovable	112
		rough surface: roughness parameter; hydrodynamic	

classification of underlying surfaces

Contents	S
----------	---

	3.4	Hydrodynamic properties of the sea surface	116
	3.5	Wind-wave interaction	123
	3.6	Vertical distribution of the temperature and passive admixture over an immovable surface	131
	3.7	Coefficients of resistance, heat exchange and evaporation for the sea surface	133
	3.8	The Monin–Obukhov similarity theory	135
	3.9	Transformation of the thermal regime of the surface	143
		atmospheric layer in the presence of wind-wave interaction	
	3.10	Methods for estimating surface fluxes of momentum, heat and humidity	147
	3.11	Methods for estimating CO_2 flux at the ocean-atmosphere interface	154
	3.12	Features of small-scale ocean-atmosphere interaction under storm conditions	160
4	Mes	oscale ocean-atmosphere interaction	165
	4.1	The planetary boundary layer	165
	4.2	Problem of closure	168
		4.2.1 First-order closure	170
		4.2.2 Second-order closure	173
	4.3	Laws of resistance and heat and humidity exchange	179
	4.4	System of planetary boundary layers of the ocean and atmosphere	183
		4.4.1 Theoretical models using <i>a priori</i> information on the magnitude and profile of the eddy viscosity coefficient	186
		4.4.2 Simplest closed models	189
		4.4.3 Semiempirical models not using <i>a priori</i> information on the magnitude and profile of the eddy viscosity coefficient	193
5	Larg	e-scale ocean-atmosphere interaction	201
	5.1	Classification of climatic system models	201
	5.2	Similarity theory for global ocean-atmosphere interaction	203
	5.3	Zero-dimensional models	209
	5.4	One-dimensional models	213
	5.5	0.5-dimensional (box) models	219
	5.6	1.5-dimensional models	239
	5.7	Two-dimensional (zonal) models	244
	5.8	Three-dimensional models	251

viii

		Contents	ix
	5.9	ENSO as a manifestation of the inter-annual variability of the ocean-atmosphere system	281
		of the ocean atmosphere system	
6	Res	ponse of the ocean-atmosphere system to external forcing	292
	6.1	Sensitivity of the climatic system: mathematical methods of analysis	292
	6.2	Equilibrium response to a change in ocean-land area ratio	304
	6.3	Equilibrium response to a change in the concentration of atmospheric CO_2	308
	6.4	Equilibrium response to a change in land surface albedo	322
	6.5	Equilibrium response to a change in soil moisture content	328
	6.6	Equilibrium response to a change in vegetative cover	331
	6.7	Transient response to a change in the concentration of atmospheric CO_2	337
Re	feren	CPS	358

References

Index

373