JERRY M.STRAKA Cloud and Precipitation Microphysics

Principles and Parameterizations

CAMBRIDGE

CLOUD AND PRECIPITATION MICROPHYSICS

Principles and Parameterizations

JERRY M. STRAKA University of Oklahoma, USA

Contents

P	refac	ce	page xiii
1	Int	roduction	1
T			
		Cloud and precipitation physics and parameterization perspec	
		Types of microphysical parameterization models	2
		Warm-rain parameterizations	4
		Cold-rain and ice-phase parameterizations	5
	1.5	Hydrometeor characteristics overview	7
	1.6	Summary	17
2	Fou	indations of microphysical parameterizations	19
	2.1	Introduction	19
	2.2	Background	19
		Power laws	21
	2.4	Spectral density functions	23
		Gamma distributions	27
	2.6	Log-normal distribution	42
	2.7	Microphysical prognostic equations	51
	2.8	Bin microphysical parameterization spectra	
		and moments	57
3	Clo	ud-droplet and cloud-ice crystal nucleation	59
	3.1	Introduction	59
	3.2	Heterogeneous nucleation of liquid-water droplets	
		for bulk model parameterizations	61
	3.3	Heterogeneous liquid-water drop nucleation for bin model	
		parameterizations	68
	3.4	Homogeneous ice-crystal nucleation parameterizations	70
		Heterogeneous ice-crystal nucleation parameterizations	72

0	
Cont	ents

4	Satu	ration adjustment	78
	4.1	Introduction	78
	4.2	Liquid bulk saturation adjustments schemes	81
	4.3	Ice and mixed-phase bulk saturation adjustments schemes	86
	4.4	A saturation adjustment used in bin microphysical	
		parameterizations	91
	4.5	Bulk model parameterization of condensation from a	
		bin model with explicit condensation	93
	4.6	The saturation ratio prognostic equation	97
5	Vap	or diffusion growth of liquid-water drops	101
	5.1	Introduction	101
	5.2	Mass flux of water vapor during diffusional growth	
		of liquid-water drops	102
	5.3	Heat flux during vapor diffusional growth of liquid water	106
	5.4	Plane, pure, liquid-water surfaces	109
	5.5	Ventilation effects	116
	5.6	Curvature effects on vapor diffusion and Kelvin's law	118
	5.7	Solute effects on vapor diffusion and Raoult's law	120
	5.8	Combined curvature and solute effects and the Kohler curves	121
	5.9	Kinetic effects	122
	5.10	Higher-order approximations to the mass tendency equation	124
	5.11	Parameterizations	129
	5.12	Bin model methods to vapor-diffusion mass gain and loss	134
	5.13	Perspective	138
6	Vap	or diffusion growth of ice-water crystals and particles	139
	6.1	Introduction	139
	6.2	Mass flux of water vapor during diffusional growth	
		of ice water	140
	6.3	Heat flux during vapor diffusional growth of ice water	141
	6.4	Plane, pure, ice-water surfaces	141
	6.5	Ventilation effects for larger ice spheres	142
	6.6	Parameterizations	143
	6.7	Effect of shape on ice-particle growth	148
7	Colle	ection growth	152
	7.1	Introduction	152
	7.2	Various forms of the collection equation	153
	7.3	Analysis of continuous, quasi-stochastic, and pure-stochastic	
		growth models	155

viii

		Contents	ix
	7.4	Terminal velocity	164
	7.5	Geometric sweep-out area and gravitational sweep-out	
		volume per unit time	165
	7.6	Approximate polynomials to the gravitational collection	
		kernel	165
	7.7	The continuous collection growth equation as a two-body	
		problem	166
	7.8	The basic form of an approximate stochastic	
		collection equation	168
	7.9	Quasi-stochastic growth interpreted by Berry and Reinhardt	169
		Continuous collection growth equation parameterizations	173
		Gamma distributions for the general collection equations	177
		Log-normal general collection equations	183
		Approximations for terminal-velocity differences	188
		Long's kernel for rain collection cloud	191
		Analytical solution to the collection equation	194
		Long's kernel self-collection for rain and cloud	195
		Analytical self-collection solution for hydrometeors	196
	/.18	Reflectivity change for the gamma distribution owing	107
	7 10	to collection	197
	1.19	Numerical solutions to the quasi-stochastic collection	198
	7 20	equation Collection, collision, and coalescence efficiencies	222
8		o breakup	231
	8.1	Introduction	231
		Collision breakup of drops	232
	8.3	Parameterization of drop breakup	234
9	Auto	conversions and conversions	253
	9.1	Introduction	253
	9.2	Autoconversion schemes for cloud droplets to drizzle	
		and raindrops	255
	9.3	Self-collection of drizzle drops and conversion of drizzle	
		into raindrops	264
	9.4	Conversion of ice crystals into snow crystals and	
		snow aggregates	264
	9.5	Conversion of ice crystals and snow aggregates into	
		graupel by riming	267
	9.6	Conversion of graupel and frozen drops into small hail	270

Contents

Х		Contents	
	9.7	Conversion of three graupel species and frozen drops amongst each other owing to changes in density by collection of liquid particles	271
	9.8	Heat budgets used to determine conversions	272
		Probabilistic (immersion) freezing	272
		Immersion freezing	283
		Two- and three-body conversions	283
		Graupel density parameterizations and density prediction	289
		Density changes in graupel and frozen drops collecting	207
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	cloud water	290
	9.14	Density changes in graupel and frozen drops collecting	
		drizzle or rain water	290
	9.15	More recent approaches to conversion of ice	291
10	5 F		293
10		growth Introduction	293 293
		Wet and spongy hail growth	293 297
		Heat-budget equation	297
		Temperature equations for hailstones	301
		Temperature equations for hailstones with heat storage	302
		Schumann–Ludlam limit for wet growth	304
		Collection efficiency of water drops for hail	306
		Hail microphysical recycling and low-density riming	307
11	Melt	ing of ice	312
11	1	ing of ice Introduction	312 312
11	11.1	Introduction	312
11	11.1 11.2	Introduction Snowflakes and snow aggregates	312 313
11	11.1 11.2 11.3	Introduction Snowflakes and snow aggregates Graupels and hailstones	312313313
11	11.1 11.2 11.3 11.4	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail	312 313
11	11.1 11.2 11.3 11.4 11.5	Introduction Snowflakes and snow aggregates Graupels and hailstones	312313313315
11	11.1 11.2 11.3 11.4 11.5 11.6	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces	 312 313 313 315 326
11	11.1 11.2 11.3 11.4 11.5 11.6	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces Shedding drops from melting hail or hail in wet growth	 312 313 313 315 326
11	11.1 11.2 11.3 11.4 11.5 11.6 11.7	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces Shedding drops from melting hail or hail in wet growth Parameterization of shedding by hail particles	312 313 313 315 326 328
	 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces Shedding drops from melting hail or hail in wet growth Parameterization of shedding by hail particles of 9–19 mm	 312 313 313 315 326 328 330
	 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Micr 	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces Shedding drops from melting hail or hail in wet growth Parameterization of shedding by hail particles of 9–19 mm Sensitivity tests with a hail melting model	312 313 313 315 326 328 330 333
	 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Micr 12.1 	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces Shedding drops from melting hail or hail in wet growth Parameterization of shedding by hail particles of 9–19 mm Sensitivity tests with a hail melting model ophysical parameterization problems and solutions	 312 313 313 315 326 328 330 333 336
	 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Micr 12.1 12.2 	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces Shedding drops from melting hail or hail in wet growth Parameterization of shedding by hail particles of 9–19 mm Sensitivity tests with a hail melting model cophysical parameterization problems and solutions Autoconversion of cloud to drizzle or rain development	312 313 313 315 326 328 330 333 336 336
	 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Micr 12.1 12.2 12.3 	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces Shedding drops from melting hail or hail in wet growth Parameterization of shedding by hail particles of 9–19 mm Sensitivity tests with a hail melting model cophysical parameterization problems and solutions Autoconversion of cloud to drizzle or rain development Gravitational sedimentation	312 313 313 315 326 328 330 333 336 336 338
	 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Micr 12.1 12.2 12.3 12.4 	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces Shedding drops from melting hail or hail in wet growth Parameterization of shedding by hail particles of 9–19 mm Sensitivity tests with a hail melting model cophysical parameterization problems and solutions Autoconversion of cloud to drizzle or rain development Gravitational sedimentation Collection and conversions	312 313 313 315 326 328 330 333 336 336 338 340
	 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Micr 12.1 12.2 12.3 12.4 	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces Shedding drops from melting hail or hail in wet growth Parameterization of shedding by hail particles of 9–19 mm Sensitivity tests with a hail melting model rophysical parameterization problems and solutions Autoconversion of cloud to drizzle or rain development Gravitational sedimentation Collection and conversions Nucleation	312 313 313 315 326 328 330 333 336 336 338 340 343
	 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Micr 12.1 12.2 12.3 12.4 	Introduction Snowflakes and snow aggregates Graupels and hailstones Melting of graupel and hail Soaking and liquid water on ice surfaces Shedding drops from melting hail or hail in wet growth Parameterization of shedding by hail particles of 9–19 mm Sensitivity tests with a hail melting model rophysical parameterization problems and solutions Autoconversion of cloud to drizzle or rain development Gravitational sedimentation Collection and conversions Nucleation	312 313 313 315 326 328 330 333 336 336 338 340 343

х

12.6 Conversion of graupel and frozen drops to hail	344
12.7 Shape parameter diagnosis from precipitation equations	345
13 Model dynamics and finite differences	346
13.1 One-and-a-half-dimensional cloud model	346
13.2 Two-dimensional dynamical models	348
13.3 Three-dimensional dynamical model	355
Appendix	367
References	
Index	

* Index