INTERNATIONAL GEOPHYSICS SERIES - VOLUME 6

Thermodynamics of Clouds

LOUIS DUFOUR and RAYMOND DEFAY

Royal Belgian Meteorological Institute Uccle, Belgium University of Brussels Brussels, Belgium

Translated by M. Smyth and A. Beer

1963

ACADEMIC PRESS New York and London

Contents

INTE	RODUCTION	•	•		v
I.]	Ideas of Capillarity				
	1. Introduction			•	1
	2. Surface Tension	•	•	·	1
	3. Mechanical Equilibrium Conditions for a Surface .	•	•	•	3
	4. Equilibrium of an Edge	•	•	•	6
	5. Contact Angle of a Fluid/Fluid Interface with the Surfac	e of a	Solid	. k	7
	6. Mechanical Work Done by a Capillary System .	•	•		9
	7. Surface Tension of a Crystal Face	·	÷	s-p	11
11.	Surface Model and Definitions of Adsorption, Surface Er Entropy	nthal	py, a	nd	
	1. The Real System and the Simplified Model				15
	2. Difficulties Inherent in the Use of the Surface Model				17
III.	Laws of Thermodynamics				
	1. Choice of Variables				19
	2. First Law of Thermodynamics				21
	3. Second Law of Thermodynamics	•	÷.,		23
IV.	Fundamental Formulas in Terms of Intensive Variables				
	1 Alman Caller Objection				29
	 Aims of the Chapter Variables on Which the Surface Functions of State Depe 	nd	•	·	29
		nu	•	·	30
	 Intensive Properties of the Surface Transformation from Intensive to Extensive Variables 	•	·	·	31
	5. Specific Surface Functions of State	·	•		32
	6. Fundamental Formulas Relating to the Surface Phase	•		•	34
	7. Fundamental Formulas in Terms of Intensive Variables	•	·	•	36
	7. Fundamental Formulas in Terms of Intensive Variables	•	·		00
۷.	Equilibrium States				
	1. Affinities of Adsorption				41
	2. Conditions for Adsorption Equilibrium				41
	3. Equilibrium Displacement				42
	4. Phase Rule		à 🔒 🛛	· ·	44
	5. Extension of Duhem's Theorem to Systems Containing S	urfac	es		46

CON'	FEN	TS
------	-----	----

VI. Adiabatic Transformations	49
VII. Examination of Some Approximations or Hypotheses	
 Aims of the Chapter Humid Air Can Be Treated as a Mixture of Two Perfect Gases: Dry Air 	55
and Water Vapor 3. The Surface Tension of a Droplet Can Be Considered Independent of the	55
Radius of Curvature4. Adsorptions Are Negligible in Comparison with the Masses Involved, and Adsorption of Atmospheric Components Has Negligible Effect on	59
the Surface Tension	$\begin{array}{c} 62\\ 65 \end{array}$
 6. The Heat Capacities at Constant Pressure of Dry Air and Water Vapor, of Which the Atmosphere Is Composed, Are Constants 7. The Heat Capacities of Pure Liquid and Solid Water Vary Only 	67
Slightly with Temperature	68
VIII. Study of a Droplet Suspended in the Atmosphere	
 Statement of the Problem Influence of Curvature on the Saturation Pressure of a Droplet 	69 70
3. Influence of Other Components on the Heat of Vaporization of Water from a Plane Surface	83
4. Influence of Curvature on the Heat of Vaporization of a Droplet	84
5. Influence of Curvature on the Equilibrium Temperature of a Droplet 6. Stability of Equilibrium of a Droplet	87 91
7. Reversible Adiabatic Transformations	95
IX. Study of an Ice Crystal Suspended in the Atmosphere	
	103
2. Influence of Radius on the Saturation Pressure Relative to an Ice Crystal	104
	106
	108
	109 110
X. Temperature of Coexistence of a Droplet of Solution and a Crystal of Ice in the Atmosphere	
1. Statement of the Problem	117
2. Droplet of Solution and Crystal of Ice Suspended in the Atmosphere . 1	118
3. Ice Crystal Contained within a Droplet of Solution Suspended in the Atmosphere	125
XI. Germs of Condensation and Crystallization	
	131
	134

xii

CONTENTS

	3. Formation of Germs, or Nucleation	151
	4. Free Energy of Formation of a Drop Phase	153
	5. Free Energy of Formation of a Crystal Phase	156
	6. Free Energy of Formation in the Case When There Is Only a Single	
	Component in the Drop or Crystal	158
	7. Choice of Shape Factor for Ice Crystals	162
XII.	Equilibrium Populations of Embryos. Calculation of Number of	
	Germs as Limiting Case of Problem of Equilibrium	
	1. Introduction	165
	2. Properties of Embryos Considered as Particles	165
	3. Comparison between the System Containing Embryos Treated as	
	Phases and the System of Particle Embryos	169
	4. Equilibrium Populations of Embryos in a Liquid Mother Phase	171
	5. Embryos and Germs of Ice in Pure Water	173
	6. Embryos and Germs of Ice in Salt Water	177
	7. Equilibrium Populations of Embryos in a Gaseous Mother Phase	179
XIII.	Nucleation Rate	
		100
	1. Definition of Nucleation Rate \cdot	183
	2. Ratio of the Forward Rate \vec{w} to the Reverse Rate \overleftarrow{w} per Unit Surface	
	Area	186
	3. Kinetics of Nucleation	189
	4. Nucleation of Water or Ice in Humid Air	195
	5. Review of the Basic Elements of the Theory of Viscosity	208
	6. Nucleation in a Pure Liquid	211
	7. Nucleation in a Liquid Mixture	213
	8. Experimental Tests in a Liquid Mother Phase	214
	9. Calculation of Mean Freezing Temperature of Water Droplets	216
	10. Values Used in Calculating Nucleation Rate and Freezing Temperature	219
	11. Determination of Ice/Water Surface Tension	225
	12. Comparison of Values of Ice/Water Surface Tension Given by Various	
	Authors	228
	LIST OF SYMBOLS	237
	BIBLIOGRAPHY	243
	AUTHOR INDEX	249
	SUBJECT INDEX	249
	NUBJECT INDEA	201

xiii