

RADIATIVE HEAT EXCHANGE IN THE ATMOSPHERE

K. Ya. KONDRAT'YEV

Professor of Atmospheric Physics University of Leningrad

A REVISED AND ENLARGED EDITION

Translated by O. TEDDER

Translation edited by C. D. WALSHAW Cavendish Laboratory

Cambridge

PERGAMON PRESS

OXFORD · LONDON · EDINBURGH · NEW YORK PARIS · FRANKFURT

CONTENTS

Ed	itor's Note	VIII
Int	troduction	ix
	1. THERMAL RADIATION. BASIC DEFINITIONS AND CONCEPTS	
1.	Basic quantitative characteristics in the field of thermal radiation	1
2.	Basic laws of thermal radiation	2
	1. Kirchhoff's law	2
	2. Planck's law	10
	3. The Stefan–Boltzmann law	13
9	4. When s distion of real hodion	15
3.	I Thermal radiation of dialectrics	15
	2. Thermal radiation of conductors	20
	 Thermal radiation of translucent reflecting bodies Thermal radiation of natural surfaces 	24 29
4.	Basic laws governing the radiative heat exchange between bodies separa- ted by a transparent medium	32
5.	Equation of transfer of radiant energy for a steady field of radiation	36
6.	Determination of thermal radiation fluxes in the atmosphere	38
	. Other about a	
	2. FUNDAMENTALS OF THE THEORY OF ACTINOMETRIC MEASUREMENTS OF THERMAL RADIATION FLUXES	
1.	Instruments for the measurement of net radiation and of radiation balance	39
	1. Pyrgeometer of Yanishevskii 2. Differential balance-meter of Laikhtman and Kucherov 3. Other instruments	39 56 59
2.	Interpretation of the results of measurements of net radiation	60
	3. ABSORPTION OF LONG-WAVE RADIATION IN THE ATMOSPHERE	
1.	Absorption of radiation by a single spectral line	62
	1. Profile of the line	62
	2. Absorption function for a single spectral line	74
	3. Absorption and transmission of radiation in the actual atmosphere	82
2.	Total absorption by a simplified absorption band	85
	1. Equidistant lines of equal intensity	85
	2. Statistical model of the absorption band	00
3.	Empirical simplification of the absorption of long-wave radiation in the atmosphere	98
4.	Quantitative characteristics of the absorption of long-wave radiation by water vapour	101
	1. General considerations	103
	2. Logarithmic absorption coefficients 3. Generalized absorption coefficients	111 117

CONTENTS

5.	Absorption of long-wave radiation by carbon dioxide and other poly- atomic gases in the atmosphere	121
	1. Carbon dioxide	121
	2. Ozone	129
0	3. Oxides of hitrogen, hydrocarbons, and other gases	132
6.	Absorption and transmission functions for diffuse radiation	134
7.	Integrated absorption function	144
8.	The selection and simplification of long-wave radiation absorption properties for application to atmospheric problems	146
	4. CALCULATION OF THE TRANSFER OF THERMAL RADIATION — GENERAL SOLUTION	
1.	Transfer of monochromatic radiation	157
2.	Some properties of the function E_n	160
3.	Transfer of non-monochromatic radiation	162
	5. METHODS OF APPROXIMATE CALCULATION OF RADIATIVE HEAT TRANSFER IN THE ATMOSPHERE	
1.	Approximate calculation of the diffusivity of radiation	168
2.	Approximate transfer equations and their use in calculating thermal	
	radiation in the atmosphere	171
	1. General equations	172
	2. Equations for simplified atmosphere models	174
3.	Radiation charts	182
	1. The Dmitriyev charts	182
	2. The Snekhter chart 3. Other charts	191
	4. The accuracy of radiation charts	196
4.	Results of calculation of the atmospheric thermal radiation fluxes at various altitudes	198
	1. Numerical values of physical parameters 2. Results of the calculations	198 201
5.	Outgoing radiation	203
6.	Radiative heat transfer in clouds	212
	6. ATMOSPHERIC EMISSION AND THE NET RADIATION AT THE GROUND	
1	Regularities observed in the variation of the net radiation and atmos-	
	pheric emission	214
	1. Cloudless sky	214
	2. Cloudy sky	219
	3. Effect of dry haze, smoke and fog	223
2.	Empirical equations for the calculation of net radiation and atmospheric emission	224
	1. Clear sky	224
9	2. Oloudy sky	229
J.	and atmospheric emission with a clear sky	238
	1. "Normal" stratification	239
	2. Effect of the surface layer of the atmosphere	243
	3. Inversion gradients	245
	4. Comparison with observational results	201

vi

	CONTENTS	vii
4.	Comparison of empirical and theoretical equations for the calculation of net radiation	254
5.	The effect on the radiative fluxes of the dependence of absorption on pressure and temperature	258
6.	Effect of thermal radiation of ozone upon the radiation balance of the earth's surface and atmosphere	265
7.	Angular distribution of the intensity of net radiation and atmospheric emission over the sky	272
	1. The net radiation 2. The atmospheric emission	$\frac{272}{288}$
8.	Effect of cloud, fog, and smoke on net radiation and atmospheric emission	290
	1. Effect of cloud 2. Effect of fog and smoke	$\frac{290}{295}$
9. 10.	Variation of net radiation with height under the cover of trees Net radiation of slopes	297 301
11.	Distribution of energy in the spectrum of net radiation and atmospheric emission	307
	7. RADIATION BALANCE	
1.	Observations of the radiation balance of the boundary surface	315
2.	The results of calculations of the radiation balance at the ground	324
3.	The radiation balance of slopes	331
4.	The physical nature of the greenhouse effect	335
5.	The radiation balance of the atmosphere and the system earth-atmosphere	340
	1. Radiation balance of the atmosphere	340
	3. The general picture of the thermal balance of the earth	341 345
	8. TEMPERATURE CHANGES IN THE ATMOSPHERE CAUSED BY RADIATIVE HEAT EXCHANGE	
1.	Equation for the heating rate	348
2.	Methods of calculation of the radiative heating rate	352
	1. Applicability of the diffusion concept in the calculation of radiative	
	2 Charts for the calculation of radiative heating rate	352
3	Results of calculations of radiative heating rate	368
	1. Free atmosphere	368
	2. The surface layer of the atmosphere 3. The stratosphere	375 377
4.	Relation between the radiative and turbulent heat exchange in the sur- face layer	378
Bil	bliography	383
Ad	ditional References	399
AŢ	pendix	407
In	lex	409