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1.1 Palrnen's Setting in the Evolution
of Meteorology

Erik Palmen's scientific career encompassed the era
during which theory and observations were brought to-
gether in a coherent conception of the global atmosphere.
Earlier general circulation schemes mostly hypothesized
meridional cells symmetrical about the earth, although
some investigators, notably Dove and FitzRoy, empha-
sized air-mass exchanges by synoptic disturbances (Lorenz

*The National Center for Atmospheric Research is sponsored by the
National Science Foundation.

1967, pp. 59-78). Contemporary studies of cyclones
during the 19th and early 20th centuries, based on then-
emerging thermodynamical-physical principles and frag-
mentary observations, established many of their significant
features (Kutzbach 1979). Elements of the earlier investi-
gations, together with new insights from observations and
theory, were assimilated into the grand concept of the
polar front theory of cyclones and the general circulation.

Palmen enthusiastically embraced this concept (intro-
duced just before his entry into meteorology) and extend-
ed it through aerological studies outlined in Section 1.2.
During this early part of his career, when he was affiliated
with and became director of the Finnish Institute of
Marine Research, he also engaged in oceanographic
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2.1 Introduction the physicists of the preceding century, and to integrate
them with different objectives, of which the formulation of
"conservation theorems" was perhaps the most far
reaching and successful.

Probably there will be little disagreement in saying that
among the researchers of those days Carl-Gustaf Rossby
was one of the most outstanding personalities, certainly the
best-known leader of such activity for a number of years.
He had written an extensive monograph (Rossby 1941) on
the general circulation just before the onset of the 1940s
war. Like all authors following the original Hadley pres-
entation, he aimed to show the then up-to-date three-cell
ageostrophic flow (Fig. 2.1)-very similar to Bergeron's
version (1928). In a later interpretation (Rossby 1949),
however, a small fourth equatorial cell was included simi-
lar to Fletcher's (1945), to depict the widespread existence
of double equatorial troughs. This interpretation was later
rejected by the Indian meteorologist Asnani (1968) and
replaced by him with a new model.

2.2 Rossby'sGeneral Circulation Concepts
Rossby seriously reacted to a suggestion by Albert Defant
(1921) that a large-scale mixing coefficient should be

19

In the forty years that have passed since the time when
Erik Palmen began his period of highest research pro-
ductivity,the methods of general circulation research have
changeddrastically. Because of the technical aids that have
become available through ever more sophisticated high-
speed computers and satellites, nonIinear models of
variousforms can now be run and tested for time periods
often of great length and even involving varying climate
conditionsover the earth.

In those early days, a concept of the actual general cir-
culation was being pieced together gradually, at first
mainly from surface observations, then from upper-air
temperatures and pressures as these gradually became
available,and finally using the upper winds which pre-
viouslyhad been completely missing in cyclones with their
cloudshields, just where they were needed most.

The expanding knowledge about the atmosphere and
oceanswas the subject of many research papers, also the
objectiveof various expeditions into uncharted areas with
a variety of aims. Theory, already a main method for
attacking the cyclone problem in the Bergen school of
VilhelmBjerknes, demanded almost visionary insight into
the general circulation. The main theoretical tool was to
linearizethe basic equations, mostly already known from
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3.1 Introduction

Thepurpose of this chapter is to present an overview of the
progressthat has been made in knowledge and under-
standing of the extratropical cyclone in the roughly
quarter-eentury that has elapsed since Palmen worked
activelyon the subject. It is recognized that other contrib-
utorsto this volume will describe more fully Palmen's own
contributionsto the subject and will treat in greater detail
various aspects of the subject that are only touched
uponhere.

With the purpose of keeping the overview to manage-
able size, it has been decided to focus on only certain
aspeetsof the cyclone problem. Topics to be emphasized
arethe struetures of fronts and cyclones and the processes
offrontogenesis and cyclogenesis. Such important topics
as the role of cyclones in the general circulation, oro-
graphieeyclogenesis and mesoscale precipitation features
withineycIoneswill be left for others to discuss. With the
purposeof putting the advances of the past quarter-cen-
turyinto perspective, the development of knowledge and
understandingof the extratropical cyclone prior to 1960
willfirstbe sketched.

3.2 Status of the Cyclone Problem Prior to 1960

As documented by Gisela Kutzbach (1979) in her treatise,
The Thermal Theory of Cyclones: A History of Meteoro-
logical Thought in the Nineteenth Century, a considerable
knowledge of cyclone structure and behavior existed prior
to World War land many relevant thermodynamic and
dynamic principles were understood. Espy, Ferrel, Dove,
Loomis, Buchan, Mohn, Ley, Köppen, Bigelow, Margules,
von Ficker, Dines and Shaw are among the many early
meteorologists whose substantial contributions are de-
scribed in Kutzbach's book. The picture of cyclones
gleaned from the efforts of these early investigators,
however, seems fragmentary when viewed against the
remarkable synthesis achieved by the Bergen school of
meteorologists under V. and J. Bjerknes in the period fol-
lowing World War I. In the polar front theory of cyclones,
which they put forth at that time (Bjerknes and Solberg
1922), the cycIone forms as a resuIt of an instability of the
polar front, a surface of discontinuity separating tropical
and polar air masses. Beginning as a wave on the front, the
cyclone undergoes a characteristic life cycle that termi-
nates in the occluded stage in which the tropical air has

27
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6.1 Introduction: Historical Perspective
The study of extratropical cyclones has provided the basis
for vigorous scientific debates within the meteorological
community for at least the past 150 years. In her mono-
graph entitled The Thermal Theory of Cyclones: A History
of Meteorological Thought in the Nineteenth Century,
Kutzbach (1979) documents the interest of the leading
European and American meteorologists of the 19th and
early 20th centuries in providing a description of the
weather and airflow associated with cyclones and identi-
fying the physical processes that contribute to their de-
velopment. In the 19th century, the emergence of the
so-called "thermal theory of cyclones" (see Fig. 6.1) was
based, to a large degree, on the work of Espy, who believed
that the decrease of surface pressure in storms is related
primarily to the release of latent heat in the ascending air
near the storm center. By the early 20th century, the

"Present affiliation: National Meteorological Center/NOAA World
Weather Building, 5200 Auth Road, Camp Springs, MD 20746'

theoretical work of Margules and V.Bjerknes and the
observational studies by Dines (which indicated extra-
tropical cyclones were cold core systems) led to a more
dynarnically based perspective on cyclogenesis. The
energy conversions and low-level convergence associated
with instabilities in regions marked by significant temper-
ature gradients (especially in the lower troposphere) were
recognized as irnportant contributing factors in the devel-
opment of extratropical storms.

The growing awareness of the irnportance of dynarnical
processes provided a basis for the polar front theory of
cyclogenesis that was developed by the Bergen school in
Norway (see, e.g., Bjerknes and Solberg 1922) and set the
stage for vigorous discussions concerning the relative
irnportance of dynarnic and thermodynarnic processes in
extratropical storms. Kutzbach's (1979, pp. 125-128) dis-
cussion on the "controversial evidence" introduced
through the synoptic studies of Hann and Loornis in the
late 19th century, and Brunt's (1930) brief note on the
origin of cyclones, in which he reviews the differences
between the thermal (or "local heating") and dynarnic (or

81
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7.1 Introduction
The idea that extratropical atmospheric variability on time
scales of the order of several days is due to an intrinsic
instability of the atmospheric circulation is widely accept-
ed in dynamic meteorology. The most evident manifesta-
tion of this variability is the development and movement of
cyclones and anticyclones (Blackmon et al. 1984). The
leading process has been identified, after Charney (1947)
and Eady (1949), in the baroclinic instability of a vertically
sheared current. The basic formulation of the theory has
been substantially improved over the past thirty years.
While the linear problem has been generalized to more
"realistic" basic state flows, the nonlinear problem has
been tackled with an increasing degree of complexity, in-
cluding dynamical analysis of chaotic regimes (Malguzzi
et al. 1988; Buzzi et al. 1990). Baroclinic instability
depends in an essential way upon boundary conditions,
and orography enters the problem as a lower boundary
condition. We shall see that orographie cyclogenesis is a

* FISBAT-CNR, elo Department of Physies, University of Bologna, Via
Irnerio 46, 40126 Bologna, Italy

phenomenological manifestation of the sensitivity of the
baroclinic atmosphere to surface relief.

That terrain characteristics are important in determining
cyclogenesis and cyclone paths has long been recognized
in synoptic meteorology (see, e.g., Ficker 1920), but prog-
ress in the understanding of the different processes
associated with orography (flow blocking or diversion,
roughness variations, elevated heat sources and sinks, etc.)
has been rather slow. Mountains and ocean-continent
contrasts induce quasi-stationary planetary waves that
destroy the zonal symmetry of the time-averaged flow.This
asymmetry, in turn, affects the spatial distribution of
cyclogenesis frequency and of cyclone tracks (see, e.g.,
Manabe and Terpstra 1974). This is not, however, the sole
effect of mountains on cyclonic scale disturbances. Moun-
tains also have a strong direct influence on baroclinic
transient eddies, in the sense that they locally affect,
through flow diversion and blocking, the spatial structure,
rate of growth and propagation of these synoptic scale
disturbances (Hsu 1987; Buzzi and Tosi 1989) and these,
in turn, affect the time-averaged flow (Speranza 1988;
Malguzzi et al. 1988).

Forecasting orographic cyclogenesis has always been a
difficult task probably due, among other causes, to lack

107
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8.1 Introduction cloud and precipitation were related to vertical air motions
A number of models aeeounting for the distribution of resulting from the relative movement of different air
cloud and preeipitation in extratropieal eyclones were masses along inelined frontal surfaces. This model is still
proposed during the 19th and early 20th eenturies. A his- widely used today. During the past quarter-century,
tory of these has been reeounted by Bergeron (1959, however, the availability of imagery from satellites and
abridged version in Bergeron 1981) and also by Ludlam radars has revolutionized the eapability to observe cloud
(1966) in his inaugural leeture as professor of rneteo- and preeipitation. The imagery has drawn attention to
rology. These models eulminated in the classical many synoptie-seale and mesoseale features not explained
Norwegian polar-front eyclone model of the Bergen sehool by the classical model, as diseussed by Reed in See-
(Bjerknes and Solberg 1922) in whieh the patterns of tion 3.3.3. It is now clear that the Norwegian model, de-
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9.1 Introduction

Today, seventy years after the concept of fronts was intro-
duced by the Bergen school, the nature of fronts and their
connection with cydones are still und er intense investiga-
tion and debate in the meteorological community. New
sophisticated observation techniques developed during the
past decades and elaborate model simulations have made
it possible to analyze the three-dimensional structure of
fronts in great detail. Numerous studies published in recent
years have increased our knowledge of the formation of
fronts and jet streams. The classic textbook by Palmen and
Newton (1969) has formed a solid basis for this research
and has been of immense importance for the recent theo-
retical advances.

The present paper does not aim at a complete review of
this extensive research activity, but deals mainly with the
development of the semi-geostrophic two-dimensional
theory. For more complete reviews of the field, the reader
is referred to recent papers by Hoskins (1982), Orlanski
et al. (1985), Keyser and Shapiro (1986), Bluestein (1986)
and Keyser (1986). Additional aspects, with emphasis on
recently observed three-dimensional frontal structures in
cydones, are reviewed by Shapiro and Keyser in Chap-
ter 10.

In the years after World War I, Jack Bjerknes and his
coworkers had to rely on surface observations and what
they could see in the sky. Bjerknes (1919) arrived at his
model of the polar front cydone through a study of con-

vergence lines on the surface map. He inferred the exis-
tence of circulations in vertical planes normal to the front.
Such transverse circulations were thus part of the frontal
concept right from the beginning. Bjerknes assumed that
the surface front would continue upward as a surface of
discontinuity in velocity and temperature, sloping in
accordance with Margules' formula.

As aerological observations became available in the late
1920s and 1930s, Jack Bjerknes could begin to study the
three-dimensional structure of the frontal cydones. Much
of this work he did in dose cooperation with Erik Palmen,
and they wrote three joint papers on the subject. They dis-
sected fronts in the troposphere and found that they were
sloping baroclinic layers of transition, about a kilometer
deep (Fig. 9.1).

In the early Bergen school, the polar front was consid-
ered the prime mover of weather systems in middle and
high latitudes. Preexisting fronts were held responsible for
the formation of new cydones, and douds and continuous
precipitation were considered to be the result of warm air
ascending over the sloping frontal surface. Two crucial
questions, however, remained: How are fronts formed, and
what causes the vertical motion that produces frontal
douds and precipitation?

Tor Bergeron (1928) -gaveat least a partial answer to the
first question. He suggested that fronts could be formed as
a result of advective concentration of isotherms along the
dilatation axes in hyperbolic fields of horizontal flow. Such
confluent advection, which is frequently seen to take place
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10.1 Introduction
The advent of kite and balloon-borne meteorograph
soundings during the early 1900s and the subsequent
deployment of regional rawinsonde networks provided the
observational basis for the study of the spatial and tempo-
ral evolution of fronts, jet streams and the tropopause.
During the mid-century years (1935-1965), researchers
focused on the structural characteristics of fronts and their
associated jet streams near the tropopause, and on the
diagnosis of the frontogenetic pro cesses and secondary
circulations governing their life cycIes. The pioneering
observational study by J. Bjerknes and E. Palmen (1937)
showed fronts to be transitional zones of finite width
(-100 km) and depth (-1 km), rather than near zero-

167

order discontinuities extending from the surface to the
tropopause. Newton (1954) presented the most compre-
hensive diagnosis of all components of upper-level fronto-
genesis during this period, and Sawyer (1956) and Eliassen
(1962) derived the diagnostic theory for geostrophically
forced secondary circulations about fronts based on the
semigeostrophic equations, which was later expanded to
the temporal dimension by Hoskins (1971) and Hoskins
and Bretherton (1972).

In contrast to their upper-level counterparts, surface
fronts received less attention from researchers during the
period, with the exception of the cIassic study by Sanders
(1955). The conceptual model of surface fronts and their
evolution during the life cycle of extratropical cycIones
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12.1 Introduction
Since the early scientific theories of the development of
extratropical cyclones in the 19th century (Kutzbach
1979), meteorologists have sought a complete and quanti-
tative description of the physics of these atmospheric
systems that dominate weather in middle latitudes. The

earliest studies were descriptive and based almost entirely
on surface observations. With the advent of instrumented
aircraft in the early 1930s, operational rawinsondes in the
1940s and satellites in the 1960s, a more complete three-
dimensional picture of the structure of extratropical
cyclones emerged, as described by others in this volume.

Professor Palmen contributed much to the early
documentation of the three-dimensional structure of
extratropical cyclones through his careful analyses of ra-

* The National Center for Atmospheric Research is sponsored by the
National Science Foundation.
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