

The Ceaseless Wind

an introduction to the theory of atmospheric motion

John A. Dutton

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland Düsseldorf Johannesburg Kuala Lumpur London Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo

Toronto

INSTITUT

FOR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITAT HANNOVER HERRENHAUSER STR. 2 - 3000 HANNOVER 21

mr. Nr. 112/24/2

7K 551,511 551. 513 551. 515

JOHN A. DUTTON, Ph.D.

Professor of Meteorology The Pennsylvania State University, University Park

The Ceaseless Wind

AN INTRODUCTION TO THE THEORY OF ATMOSPHERIC MOTION

CONTENTS

	Preface	xi
	Part One Foundations of Atmospheric Dynamics	
	Chapter 1 To Touch the Wind	3
1.1	The Goals of Dynamic Meteorology	3
1.2	The Language of Science	6
1.3	Toward Thermodynamic Peace	8
1.4	The Major Simplifications	9
1.5	Challenges Facing Dynamic Meterology	11
	Chapter 2 Some Basic Physical and Mathematical Concepts	
	of Atmospheric Science	16
2.1	Fundamental Physical Concepts	17
2.2	Fundamental Mathematical Concepts and Operations	19
2.3	Variables Used to Describe Atmospheric Processes	21
2.4	Taylor's Theorem and Numerical Prediction	28
2.5	The Total or Material Derivative	30
2.6	From Parcels to Points	33
	Bibliographic Notes	34

viii CONTENTS

	Chapter 3 Introduction to Atmospheric Thermodynamics	35
3.1	Basic Thermodynamics	35
3.2	Thermodynamics of Air as an Ideal Gas	41
3.3	Integrals and Entropy	45
3.4	Open Systems	52
	Bibliographic Notes	58
	Chapter 4 The Vertical Structure of the Atmosphere	60
4.1	Hydrostatic Pressure Variations	61
4.2	Geopotential and Geopotential Altitude	65
4.3	Temperature, Lapse Rate, and Model Atmospheres	66
4.4	Static Stability and Parcel Motion	69
4.5	Stability and Wind Shear	75
4.6	Vertical and Latitudinal Variation of Atmospheric Structure	80
	Bibliographic Notes	94
	Chapter 5 Vector and Tensor Analysis and the Fundamental	
	Kinematics of Fluid Flow	96
5.1	Vector Analysis	97
5.2	Integrals of Vector Quantities	108
5.3	Differentiation of Integrals; the Transport Theorem	115
5.4	Curvilinear Coordinates and the ♥ Operator	124
5.5	Introduction to Tensor Analysis	133
5.6	Representations of Velocity Fields	145
5.7	A Mathematical Model of Fluid Flow; Eulerian and Material	150
	Descriptions	158
	Bibliographic Notes	164
	Part Two The Equations of Atmospheric Motion	
	Chapter 6 The Equations of Motion in Inertial Coordinates	169
6.1	Coordinate Systems: A Prelude to the Equations of Motion	170
6.2	Forces That Accelerate Fluids	172
6.3	The Fundamental Equations of Motion	175
6.4	The First Law of Thermodynamics	180
6.5	Special Forms of the Equations of Motion	183
6.6	Energy Conservation in the Atmosphere	190
6.7	The Origin of Fluid Motion	192
6.8	The Stress Tensor and Frictional Forces	196
6.9	Boundary Conditions	206
6.10	Some Exact Solutions to the Equations of Motion	212
6.11	The Existence of Solutions	216
	Bibliographic Notes	217

	Chapter 7 Meteorological Equations of Motion	220
7.1	Effects of the Earth's Rotation	220
7.2	The Equations of Motion for a Spherical Earth	229
7.3	Isobaric and Isentropic Coordinates	236
7.4	Generalized Coordinates	248
	Bibliographic Notes	254
	Chapter 8 Water in the Air	256
8.1	Water Vapor and Moist Air	257
8.2	Condensation and the van der Waals Equation of State	261
8.3	Saturation, Melting, and the Clausius-Clapeyron Equation	269
8.4	Dew Point and Humidity	273
8.5	Ascent and Stability of Moist Parcels	274
8.6	Thermodynamic Theory of Phase Changes in Moist Air	280
8.7	These Few Symbols	285
	Bibliographic Notes	286
	Part Three The Theory of Atmospheric Motion	
	Chapter 9 Air in Motion: Models of the Winds	289
9.1	The Geostrophic Wind	289
9.2	Scale Analysis and the Geostrophic Approximation	293
9.3	Inertial Oscillations and Geostrophic Adjustment with Linear	
	Friction	296
9.4	Inertial Instability	298
9.5	Vertical Shear of V_g : The Thermal Wind	302
9.6	The Gradient Wind	311
9.7	Streamlines and Trajectories	315
9.8	Determination of Vertical Velocities	320
9.9	Isentropic Trajectories	324
9.10	Some Other Types of Wind	327
	Bibliographic Notes	330
	Chapter 10 The Rotational Component of the Wind: Vorticity	
	and Circulation	332
10.1	The Concept of Vorticity	333
10.2	Meteorological Vorticity Equations	339
10.3	Preliminaries to Diagnosis and Prediction with Vorticity Equations	349
10.4	Long Waves in the Westerlies (the Rossby Theory)	351
10.5	Vertical Motion and Vorticity	355
10.6	Development of Surface Cyclones (Sutcliffe Theory)	357
10.7	The Omega Equation	360
10.8	Kinematics of Circulation and Vortices	364
10.9	Atmospheric Circulation Theorems	370

x CONTENTS

10.10 10.11	The Maintenance of Circulation Vorticity Theorems for Moving Parcels	377 381
10.12	Vorticity and Viscosity Bibliographic Notes	391 397
	Chapter 11 Atmospheric Energetics: Global Thermodynamics to Turbulence	399
11.1	Basic Energy and Entropy Theorems	399
11.2	Energetics in Isobaric and Isentropic Coordinates	410
11.3	Available Potential Energy	415
11.4	Global Thermodynamics	428
11.5	Variational Derivation of the Equation of Motion	435
11.6	The Energetics of Disturbed or Turbulent Motion	439
	Bibliographic Notes	450
	Chapter 12 Atmospheric Wave Motion	452
12.1	Basic Concepts of Wave Motion	453
12.2	External Gravity Waves	460
12.3	Pure Types of Atmospheric Wave Motion	464
12.4	Sound and Gravity Waves in an Isothermal Atmosphere	473
	Bibliographic Notes	486
	Chapter 13 Approximate Equations of Motion for Small-Scale	
	Flow	488
13.1	Scale Analysis of the Equations	489
13.2	The Equations, Boundary Conditions, and Energy Forms	496
13.3	The Linear Wave Equations	500
13.4	Integral Stability Theorems and the Critical Richardson Number	503
	Bibliographic Notes	510
	Chapter 14 The Quasi-geostrophic Theory of Large-Scale Flow	512
14.1	Quasi-geostrophic Scale Analysis	513
14.2	Discussion of the Quasi-geostrophic Equations	521
14.3	Linear Stability of Quasi-geostrophic Motions	525
14.4	The Nonlinear Quasi-geostrophic Equation	540
	Bibliographic Notes	553
	Appendix 1 The First Law of Thermodynamics	554
	Appendix 2 International System of Units	557
	Mathematical Symbols	559
	Index	561