
McGRAW-HILL SERIES IN MECHANICAL ENGINEERING

1. 11

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland Düsseldorf Johannesburg Kuala Lumpur London Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto

J. O. HINZE Turbulence

SECOND EDITION

CONTENTS

Preface to the Second Edition	viii
Preface to the First Edition	ix

Chapter 1	General Introduction and Concepts	1
1-1	Definition of Turbulence and Introductory Concepts	1
1-2	Equations of Motion for Turbulent Flow; Reynolds Stresses	15
	Cylindrical Coordinates	26
1-3	Equation for the Conservation of a Transferable Scalar	
	Quantity in a Turbulent Flow	29
1-4	Double Correlations between Turbulence-Velocity	
	Components	30
1-5	Change in Double Velocity Correlations with Time;	
	Introduction of Triple Velocity Correlations	35
1-6	Features of the Double Longitudinal and Lateral Correlations	
	in a Homogeneous Turbulence	39
1-7	Integral Scale of Turbulence	43
1-8	Other Eulerian Correlations	44
1-9	Turbulent Diffusion of Fluid Particles;	
	Lagrangian Correlations	48
1-10	Recapitulation of Correlations	56
	Eulerian Space Correlations	56
	Eulerian Time Correlation	57
	Lagrangian Time Correlation	57
1-11	Empirical Formulas for Double-Correlation Curves	58
	Taylor's One-dimensional Energy Spectrum	61
	Energy Relations in Turbulent Flows	68

iv CONTENTS

	References Nomenclature for Chapter 1	79 80
Chapter 2	Principles of Methods and Techniques in the Measurement of Turbulent Flows	83
2-1	Introduction	83
2-2	The Hot-Wire Anemometer Effect of Compressibility	85 91
2-3	Constant-Temperature Method Cooling Effect of the Wire Supports	96 98
	Dynamic Behavior with Heat Loss to Supports Effect of Large Turbulence Fluctuations on the Response of	100
	a Hot Wire	105
	Effect of Compressibility	111

	Lineer of compressionity	
2-4	Constant-Current Method	113
	Effect of Large Turbulence Fluctuations	115
	Effect of Nonlinearity Due to Temperature	117
	Dependence of Factors	
2-5	Measurement of Turbulence Characteristics with the Hot-Wire	
	Anemometer	119
	Measurement of Turbulence Intensities	123
	Measurement of Double and Triple Velocity Correlations	127
	Measurement of Spectrum and Scale of Turbulence	131
2-6	Measurement of Temperature and Concentration	
	Fluctuations with the Hot-Wire Anemometer:	
	Constant-Current Method	135
	Measurement of Concentration Fluctuations	139
2-7	Limitations of the Hot-Wire Anemometer	139
2-8	Other Turbulence Measuring Probes	144
	Thermistor	145
	Mechanical Probes	145

Electrical Probes 149 **Electrochemical Probe** 153 2-9 Methods Based upon Flow Visualization 154 Hydrogen Bubble Technique 155 Light Refraction by Density Variations 159 Methods Based on Scattering and Absorption of Light 160 2-10 Measurement of Mean Values of Static Pressure and Velocity 164 Measurement of Mean Velocity 166 References 168

172

Nomenclature for Chapter 2

Chapter 3	Isotropic Turbulence	175
3-1	Introduction	175
3-2	Correlation Tensors	178
	First-Order Correlation Tensor	178
	Second-Order Correlation Tensor	181
	Third-Order Correlation Tensor	189
3-3	Differential Equation for the Dynamic Behavior of an	
	Isotropic Turbulence	195
3-4	The Three-dimensional Energy Spectrum	202
3-5	The Dynamic Equation for the Energy Spectrum	211
	The "Physical Closure" Approximations in the Light of	
	Experimental Evidence	250
3-6	The Decay of an Isotropic Turbulence	259
3-7	Extension to an Isotropic-Turbulent Scalar Field	278
	Correlations	278
	The Dynamic Equation for $\mathbf{Q}_{\gamma,\gamma}(r,t)$	282
	The Spectral Distribution of a Scalar Quantity	283
	The Dynamic Equation for $\mathbf{E}_{y}(k,t)$	286
	The Decay of an Isotropic Scalar Field	300
3-8	Pressure Fluctuations in Isotropic Turbulence	305
3-9	Some Remarks on the Effect of Compressibility	310
	References	315
	Nomenclature for Chapter 3	319
Chapter 4	Homogeneous, Shear-Flow Turbulence	321
4-1	Introduction	321
	Dynamics of the One-Point Velocity Correlation $\overline{u_i u_j}$	323
	Dynamics of the Two-Point Velocity Correlation $\overline{(u_i)_A(u_j)_B}$	328
	Homogeneous Turbulence	331
4-4	The Dynamic Equation for the Energy Spectrum	334
	Experimental Results	350
	References	356
	Nomenclature for Chapter 4	356
1		
		358
Chapter 5	Transport Processes in Turbulent Flows	
5-1	Introduction	358
5-2	Mixing-Length and Phenomenological Theories	360
5-3	Analogies in Turbulent Transport	376

5-5Analogies in Fullbulent Fullsport5-4Transport by Turbulent Diffusion384

	Relative Diffusion of Two Fluid Particles	406
	Deformation of a Fluid Element	412
	Relationship Between Eulerian and Lagrangian Correlations	416
5-5	Diffusion from a Fixed Source in a Uniform Flow	427
5-6	Diffusion from a Fixed Source in a Turbulent Shear Flow	451
5-7	Diffusion of Discrete Particles in a Homogeneous Turbulence	460
5-8	Effect of Compressibility	471
	References	477
	Nomenclature for Chapter 5	480

Chapter o	Free Turbulent Snear Flows	483
6-1	Introduction	483
6-2	Similarity Considerations	486
6-3	Approximations Applied to the Equations of Motion	489
6-4	Velocity Distribution Behind a Cylinder According to the	
	Classical Theories	496
	Axi-symmetric Wake	502
6-5	The Transport of a Scalar Quantity in the Wake Flow of a	
	Cylinder	503
6-6	Measurements of Mean-Velocity and Mean-Temperature	
	Distribution in the Wake Flow of a Cylinder	505
	Axi-symmetric Wake	509
6-7	Measurements of Turbulence Quantities in the Wake Flow of	
	a Cylinder	510
	Axi-symmetric Wake	519
6-8	Velocity Distribution in a Round Free Jet According to the	
	Classical Theories	520
	Prandtl's Mixing-Length Theory	527
	Reichardt's Inductive Theory	529
6-9	The Transport of a Scalar Quantity in a Round Free Jet	531
6-10	Measurements of Mean-Velocity and Mean-Temperature	
	Distribution in a Round Free Jet	534
6-11	Measurements of Turbulence Quantities in a Round Free Jet	546
6-12	The Structure of Free Turbulent Shear Flow and Transport	
	Processes	558
	References	581
	Nomenclature for Chapter 6	583

Chapter '	7 "Wall" Turbulent Shear Flows	586
7-	1 Introduction	
7-	2 Approximations to the Equations of Motion, and Their	586
	Integral Relations for a Plane Boundary Layer	588
	Boundary-Layer Approximations	589
	Integral Relations	593
7-	3 The Laminar Boundary Layer and Transition	597
7-	4 Further Considerations on Transition to Turbulence of a	
	Laminar Boundary Layer	600
	Mathematical Models	613
7-		
	Classical Theories	614
7-		626
7-		638
	Effect of Fluid Compressibility	653
7-		
	Boundary Layer	656
	Mechanism of the Turbulence in the Wall Region	659
	Wall-Pressure Fluctuations	668
	Convection Velocities	673
	Active and Inactive Motions	680
	Dependency Between the Turbulence in the Outer Region and	
	that in the Wall Region	681
7-		684
7-	10 Nonclassical Theories on the Distribution of Mean Properties	
	in a Plane Boundary Layer	690
	"Model" Theories	703
	11 Transition to Turbulence of a Laminar Poiseuille Flow	707
7.	12 Turbulent Flow through a Straight Circular Pipe. Mean-	
	velocity Distribution	715
	13 Measurements of Turbulence Quantities in Pipe Flow	724
7.	14 Transport of a Scalar Quantity in Wall Turbulence	742
	Effect of Wall Roughness on Heat Transfer	757
	Effect of Free-Stream Turbulence on Boundary-Layer	-
	Transport	760
	References	762
	Nomenclature for Chapter 7	769
A	ppendix—Elements of Cartesian Tensors	771
	ame Index	781
S	ubject Index	785