S.R. DE GROOT

THERMODYNAMIK IRREVERSIBLER PROZESSE

HOCHSCHULTASCHENBÜCHER

18/18a

INSTITUT 47 1831

FUR METEOROLOGIE U. KLIMATOLOGIE

DER TECHN. UNIVERSITÄT

THERMODYNAMIK
IRREVERSIBLER PROZESSE

von

S. R. de GROOT

o. Professor für theoretische Physik an der Universität Amsterdam

Ins Deutsche übersetzt

von

HERBERT STAUDE

o. Professor für physikalische Chemie an der Universität Frankfurt/Main

BIBLIOGRAPHISCHES INSTITUT · MANNHEIM

HOCHSCHULTASCHENBÜCHER-VERLAG

INHALT

I.	Einf	üh <mark>rung</mark>	
	§ 1.	Über die Theorien irreversibler Prozesse	1
	§ 2.	Onsagers Theorie	4
	§ 3.	Thermodynamische Funktionen des Nichtgleichgewichtes	8
II.	Die	Onsagerschen Reziprozitätsbeziehungen	
	§ 4.	Behandlungsmethode	11
	§ 5.	Schwankungstheorie	11
	§ 6.	Mikroskopische Reversibilität	13
	§ 7.	Abnahme der Schwankungen	14
	§ 8.	Ableitung der Onsager-Beziehungen	16
III.	Eink	omponentensysteme	
	§ 9.	Thermomolekulare Druckdifferenz und mechano-	
		kalorischer Effekt	17
	§ 10.	Über eine andere Wahl von Flüssen und Kräften	24
	§ 11.	Über eine dritte Wahl von Flüssen und Kräften	26
	§ 12.	Reduktion der phänomenologischen Koeffizientenmatrix	
		auf eine Diagonalform	28
		Verschiebung des Energienullpunktes	29
	§ 14.	Ableitung der Überführungswärme in einem Knudsen-	
		Gas	30
IV.		meleitung, Elektrische Leitung und Relaxationsphänomene	
	0	Einführung	33
		Wärmeüberführung von einem System auf ein anderes	34
		Eindimensionale Wärmeleitung	35
		Dreidimensionale Wärmeleitung	36
		Wärmeleitung in einem äußeren Magnetfeld	41
		Elektrische Leitung	41
		Elektrische Leitung in einem äußeren Magnetfeld	45
	§ 22.	Relaxationsphänomene	46
V.		ontinuierliche Systeme ohne chemische Reaktionen	
		Einleitung	48
		Die Grundgleichungen	49
	§ 25.	Die Entropiebilanz und die phänomenologischen Glei-	
		chungen	52
		Die Überführungsenergien	53
	§ 27.	Der stationäre Zustand. Der thermomolekulare Druck-	
		effekt und der thermische Effusionseffekt	54

	§ 28.	Stationäre Zustände erster und zweiter Ordnung. Der			
		mechano-kalorische Effekt	57		
	§ 29.	Lineare Transformation von Flüssen und Kräften	59		
VI.	Diskontinuierliche Systeme mit chemischen Reaktionen				
	§ 30.	Einführung	65		
	§ 31.	Die Grundgleichungen	65		
	§ 32.	Die Entropiebilanz und die phänomenologischen Glei-			
		chungen	67		
	§ 33.	Die stationären Zustände	71		
	§ 34.	Der stationäre Zustand erster Ordnung	71		
	§ 35.	Der stationäre Zustand zweiter Ordnung und Über-			
		führungsenergien	74		
	§ 36.	Der thermomolekulare Druckeffekt	77		
	§ 37.	Der thermische Effusionseffekt	78		
	§ 38.	Der chemische Effekt	79		
	§ 39.	Der mechano-kalorische Effekt und Überführungswärmen	79		
	§ 40.	Energie- und Wärmeleitung im stationären Zustand			
		erster Ordnung	81		
	§ 41.	Flüssiges Helium II	82		
VII.	Kont	tinuierliche Systeme (Gewöhnliche Diffusion, Thermo-			
	diffu	sion, Viskosität, Gewöhnliche und Thermodiffusions-			
	poter	ntiale usw.)			
	§ 42.	Einleitung	86		
	§.43.	Die Grundgleichungen	86		
	§ 44.	Die Entropiebilanz	89		
	§ 45.	Die phänomenologischen Gleichungen	92		
	§ 46.	Gewöhnliche Diffusion	93		
		Mechanisches Gleichgewicht	98		
	§ 48.	Gewöhnliche, molekulare und baryzentrische Diffusion	100		
	§ 49.	Thermodiffusion (Ludwig-Soret-Effekt)	103		
	§ 50.	Der Dufour-Effekt	109		
	§ 51.	Die Viskosität	111		
	§ 52.	Lineare Transformation von Flüssen und Kräften	114		
	§ 53.	Lineare Transformation in Verbindung mit elektrischen	1		
		Erscheinungen	118		
	§ 54.	Der stationäre Zustand in Systemen mit elektrischen			
		Ladungen (Thermodiffusion und elektrisches Potential)	124		
	§ 55.	Der nichtstationäre Zustand in Systemen mit elektri-			
		schen Ladungen (Thermodiffusion; gewöhnliches und			
		Thermodiffusionspotential)	126		

Inhalt		VII

III.	Thermoelektrizität		
	§ 56.	Einleitung	130
	§ 57.	Die direkte Methode	131
	§ 58.	Diskussion der direkten Methode	134
	§ 59.	Eine Methode, die Überführungswärmen verwendet	136
	§ 60.	Eine Methode, die Überführungsentropien benutzt	141
	§ 61.	Thermomagnetische und galvanomagnetische Effekte .	147
IX.		Chemie	
		Einleitung	151
		Chemische Reaktionen in geschlossenen Systemen	151
		Chemische Reaktionen in offenen Systemen	155
	§ 65.	Reaktionsgeschwindigkeit und Reaktionslaufzahl bei	
	-	chemischen Reaktionen	158
		Elektrochemie	164
		Elektrokinetische Effekte	168
	§ 68.	Überlagerung einer chemischen Reaktion und eines	
		Relaxationsphänomens	172
X.		stationären Zustände	
	- 10 mm		178
		Zustände, für die die Entropieerzeugung ein Minimum ist	
			180
	100	Stationäre Zustände verschiedener Ordnung	182
		Der stationäre Zustand nullter Ordnung	183
		Stationäre Zustände erster und zweiter Ordnung	184
	§ 75.	Beispiele für das Prinzip von Le Chatelier in Anwendung	
		auf stationäre Zustände erster Ordnung	187
	§ 76.	Anwendung in der Biologie	188
XI.		ere Diskussion über die Grundlagen	
	§ 77.	Die Transformationseigenschaften der Onsager-Bezie-	
		hungen	190
	§ 78.	Der Einfluß von ungeraden und geraden Variablen auf	
		die Onsager-Beziehungen	194
		Verallgemeinerungen des Onsager-Theorems	199
		Thermodynamische Funktionen des Nichtgleichgewichts	201
	§ 81.	Andere thermodynamische Theorien der irreversiblen	ALC:
		Prozesse	205
nhang			
	§ 82.	Bibliographie	210
		Literaturhinweise	216