
Dynamics of the Atmosphere

wilford zdunkowski and Andreas Bott

CAMBRIDGE

DYNAMICS OF THE ATMOSPHERE: A COURSE IN THEORETICAL METEOROLOGY

WILFORD ZDUNKOWSKI and ANDREAS BOTT

DI 289

Dk; 551.511, 551.511.2, 551.511.3, 551.511.6, 551.51.61, 551.511.62, 551.

> 352/YEAS INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITÄT HANNOVER HERRENHÄUSER STR. 2 - 30419 HANNOVER

	Prefac	e	page xv
Part 1	Mathe	ematical tools	1
M1	Algeb	ra of vectors	3
	M1.1	Basic concepts and definitions	3
	M1.2	Reference frames	6
	M1.3	Vector multiplication	7
	M1.4	Reciprocal coordinate systems	15
	M1.5	Vector representations	19
	M1.6	Products of vectors in general coordinate systems	22
	M1.7	Problems	23
M2	Vector	functions	25
	M2.1	Basic definitions and operations	25
	M2.2	Special dyadics	28
	M2.3	Principal-axis transformation of symmetric tensors	32
	M2.4	Invariants of a dyadic	34
	M2.5	Tensor algebra	40
	M2.6	Problems	42
M3	Differ	ential relations	43
	M3.1	Differentiation of extensive functions	43
	M3.2	The Hamilton operator in generalized coordinate	
		systems	48
	M3.3	The spatial derivative of the basis vectors	51
	M3.4	Differential invariants in generalized coordinate systems	53
	M3.5	Additional applications	56
	M3.6	Problems	60
M4	Coord	inate transformations	62
	M4.1	Transformation relations of time-independent	
		coordinate systems	62

	M4.2	Transformation relations of time-dependent	
		coordinate systems	67
	M4.3	Problems	73
M5	The m	ethod of covariant differentiation	75
	M5.1	Spatial differentiation of vectors and dyadics	75
	M5.2	Time differentiation of vectors and dyadics	79
	M5.3	The local dyadic of v_P	82
	M5.4	Problems	83
M6	Integr	al operations	84
	M6.1	Curves, surfaces, and volumes in the general q^i system	84
	M6.2	Line integrals, surface integrals, and volume integrals	87
	M6.3	Integral theorems	90
	M6.4	Fluid lines, surfaces, and volumes	94
	M6.5	Time differentiation of fluid integrals	96
	M6.6	The general form of the budget equation	101
	M6.7	Gauss' theorem and the Dirac delta function	104
	M6.8	Solution of Poisson's differential equation	106
	M6.9	Appendix: Remarks on Euclidian and Riemannian	
		spaces	107
) Problems	110
M7	Introd	uction to the concepts of nonlinear dynamics	111
	M7.1	One-dimensional flow	111
	M7.2	Two-dimensional flow	116
Part 2		mics of the atmosphere	131
1		tws of atmospheric motion	133
	1.1	The equation of absolute motion	133
	1.2	The energy budget in the absolute reference system	136
	1.3	The geographical coordinate system	137
	1.4	The equation of relative motion	146
	1.5	The energy budget of the general relative system	147
	1.6	The decomposition of the equation of motion	150
	1.7	Problems	154
2		analysis	157
	2.1	An outline of the method	157
	2.2	Practical formulation of the dimensionless flow	1 = 0
		numbers	159
	2.3	Scale analysis of large-scale frictionless motion	161
	2.4	The geostrophic wind and the Euler wind	167
	2.5	The equation of motion on a tangential plane	169
	2.6	Problems	169

viii

		Contents		ix
3	The ma	aterial and the local description of flow		171
	3.1	The description of Lagrange		171
	3.2	Lagrange's version of the continuity equation		173
	3.3	An example of the use of Lagrangian coordinates		175
	3.4	The local description of Euler		182
	3.5	Transformation from the Eulerian to the Lagrangian		
		system		186
	3.6	Problems		187
4	Atmos	pheric flow fields		189
	4.1	The velocity dyadic		189
	4.2	The deformation of the continuum		193
	4.3	Individual changes with time of geometric fluid		
		configurations		199
	4.4	Problems		205
5	The Na	avier–Stokes stress tensor		206
	5.1	The general stress tensor		206
	5.2	Equilibrium conditions in the stress field		208
	5.3	Symmetry of the stress tensor		209
	5.4	The frictional stress tensor and the deformation		
		dyadic		210
	5.5	Problems		212
6	The He	elmholtz theorem		214
	6.1	The three-dimensional Helmholtz theorem		214
	6.2	The two-dimensional Helmholtz theorem		216
	6.3	Problems		217
7	Kinem	atics of two-dimensional flow		218
	7.1	Atmospheric flow fields		218
	7.2	Two-dimensional streamlines and normals		222
	7.3	Streamlines in a drifting coordinate system		225
	7.4	Problems		228
8	Natura	l coordinates		230
	8.1	Introduction		230
	8.2	Differential definitions of the coordinate lines		232
	8.3	Metric relationships		235
	8.4	Blaton's equation		236
	8.5	Individual and local time derivatives of the velocity		238
	8.6	Differential invariants		239
	8.7	The equation of motion for frictionless horizontal flow	W	242
	8.8	The gradient wind relation		243
	8.9	Problems		244

a	
Contents	
Contento	

9	Bound	dary surfaces and boundary conditions	246
	9.1	Introduction	246
	9.2	Differential operations at discontinuity surfaces	247
	9.3	Particle invariance at boundary surfaces, displacement	
		velocities	251
	9.4	The kinematic boundary-surface condition	253
	9.5	The dynamic boundary-surface condition	258
	9.6	The zeroth-order discontinuity surface	259
	9.7	An example of a first-order discontinuity surface	265
	9.8	Problems	267
10	Circul	lation and vorticity theorems	268
	10.1	Ertel's form of the continuity equation	268
	10.2	The baroclinic Weber transformation	271
	10.3	The baroclinic Ertel–Rossby invariant	275
	10.4	Circulation and vorticity theorems for frictionless	
		baroclinic flow	276
	10.5	Circulation and vorticity theorems for frictionless	
		barotropic flow	293
	10.6	Problems	301
11	Turbu	lent systems	302
	11.1	Simple averages and fluctuations	302
	11.2	Weighted averages and fluctuations	304
	11.3	Averaging the individual time derivative and the	
		budget operator	306
	11.4	Integral means	307
	11.5	Budget equations of the turbulent system	310
	11.6	The energy budget of the turbulent system	313
	11.7	Diagnostic and prognostic equations of turbulent	
		systems	315
	11.8	Production of entropy in the microturbulent system	319
	11.9	Problems	324
12	An ex	cursion into spectral turbulence theory	326
	12.1	Fourier Representation of the continuity equation and	
		the equation of motion	326
	12.2	The budget equation for the amplitude of the	
		kinetic energy	331
	12.3	Isotropic conditions, the transition to the continuous	
		wavenumber space	333
	12.4	The Heisenberg spectrum	336
	12.5	Relations for the Heisenberg exchange coefficient	340
	12.6	A prognostic equation for the exchange coefficient	341

Х

		Contents	xi
	12.7	Concluding remarks on closure procedures	346
	12.8	Problems	348
13	The at	mospheric boundary layer	349
	13.1	Introduction	349
	13.2	Prandtl-layer theory	350
	13.3	The Monin–Obukhov similarity theory of the neutral	
		Prandtl layer	358
	13.4	The Monin–Obukhov similarity theory of the diabatic	
		Prandtl layer	362
	13.5	Application of the Prandtl-layer theory in numerical	
		prognostic models	369
	13.6	The fluxes, the dissipation of energy, and the exchange	
		coefficients	371
	13.7	The interface condition at the earth's surface	372
	13.8	The Ekman layer – the classical approach	375
	13.9	The composite Ekman layer	381
	13.10	Ekman pumping	388
	13.11	Appendix A: Dimensional analysis	391
	13.12	Appendix B: The mixing length	394
	13.13	Problems	396
14	Wave	motion in the atmosphere	398
	14.1	The representation of waves	398
	14.2	The group velocity	401
	14.3	Perturbation theory	403
	14.4		407
	14.5	Sound waves and gravity waves	410
	14.6	Lamb waves	418
	14.7	Lee waves	418
	14.8	Propagation of energy	418
	14.9	External gravity waves	422
	14.10		426
	14.11	Nonlinear waves in the atmosphere	431
	14.12	Problems	434
15	The ba	arotropic model	435
	15.1	The basic assumptions of the barotropic model	435
	15.2	The unfiltered barotropic prediction model	437
	15.3	The filtered barotropic model	450
	15.4	Barotropic instability	452
	15.5	The mechanism of barotropic development	463
	15.6	Appendix	468
	15.7	Problems	470

16	Rossb	y waves	471
	16.1	One- and two-dimensional Rossby waves	471
	16.2	Three-dimensional Rossby waves	476
	16.3	Normal-mode considerations	479
	16.4	Energy transport by Rossby waves	482
	16.5	The influence of friction on the stationary Rossby wave	483
	16.6	Barotropic equatorial waves	484
	16.7	The principle of geostrophic adjustment	487
	16.8	Appendix	493
	16.9	Problems	494
17	Inertia	l and dynamic stability	495
	17.1	Inertial motion in a horizontally homogeneous	
		pressure field	495
	17.2	Inertial motion in a homogeneous geostrophic wind field	497
	17.3	Inertial motion in a geostrophic shear wind field	498
	17.4	Derivation of the stability criteria in the geostrophic	
		wind field	501
	17.5	Sectorial stability and instability	504
	17.6	Sectorial stability for normal atmospheric conditions	509
	17.7	Sectorial stability and instability with permanent	
		adaptation	510
	17.8	Problems	512
18	The ec	uation of motion in general coordinate systems	513
	18.1	Introduction	513
	18.2	The covariant equation of motion in general coordinate	
		systems	514
	18.3	The contravariant equation of motion in general	
		coordinate systems	518
	18.4	The equation of motion in orthogonal coordinate systems	520
	18.5	Lagrange's equation of motion	523
	18.6	Hamilton's equation of motion	527
	18.7	Appendix	530
	18.8	Problems	531
19	The ge	eographical coordinate system	532
	19.1	The equation of motion	532
	19.2	Application of Lagrange's equation of motion	536
	19.3	The first metric simplification	538
	19.4	The coordinate simplification	539
	19.5	The continuity equation	540
	19.6	Problems	541

xii

0	1.2		
Cor	nte	nt	2

20	The st	ereographic coordinate system	542
	20.1	The stereographic projection	542
	20.2	Metric forms in stereographic coordinates	546
	20.3	The absolute kinetic energy in stereographic coordinates	549
	20.4	The equation of motion in the stereographic	
		Cartesian coordinates	550
	20.5	The equation of motion in stereographic	
		cylindrical coordinates	554
	20.6	The continuity equation	556
	20.7	The equation of motion on the tangential plane	558
	20.8	The equation of motion in Lagrangian enumereation	
		coordinates	559
	20.9	Problems	564
21	Orogra	aphy-following coordinate systems	565
	21.1	The metric of the η system	565
	21.2	The equation of motion in the η system	568
	21.3	The continuity equation in the η system	571
	21.4	Problems	571
22	The st	ereographic system with a generalized vertical coordinate	572
	22.1	The ξ transformation and resulting equations	573
	22.2	The pressure system	577
	22.3	The solution scheme using the pressure system	579
	22.4	The solution to a simplified prediction problem	582
	22.5	The solution scheme with a normalized pressure	
		coordinate	584
	22.6	The solution scheme with potential temperature as	
		vertical coordinate	587
	22.7	Problems	589
23	A qua	si-geostrophic baroclinic model	591
	23.1	Introduction	591
	23.2	The first law of thermodynamics in various forms	592
	23.4	The vorticity and the divergence equation	593
	23.5	The first and second filter conditions	595
	23.6	The geostrophic approximation of the heat equation	597
	23.7	The geostrophic approximation of the vorticity equation	603
	23.8	The ω equation	605
	23.9	The Philipps approximation of the ageostrophic	
		component of the horizontal wind	609
	23.10	Applications of the Philipps wind	614
	23.11	Problems	617

xiii

24	A two	-level prognostic model, baroclinic instability	619
	24.1	Introduction	619
	24.2	The mathematical development of the two-level model	619
	24.3	The Phillips quasi-geostrophic two-level circulation model	623
	24.4	Baroclinic instability	624
	24.5	Problems	633
25	An ex	cursion concerning numerical procedures	634
	25.1	Numerical stability of the one-dimensional	
		advection equation	634
	25.2	Application of forward-in-time and central-in-space	
		difference quotients	640
	25.3	A practical method for the elimination of the weak	
		instability	642
	25.4	The implicit method	642
	25.5	The aliasing error and nonlinear instability	645
	25.6	Problems	648
26		ling of atmospheric flow by spectral techniques	649
2	26.1	Introduction	649
	26.2		650
	26.3	Horizontal discretization	655
	26.4	Problems	667
27		tability	669
	27.1	Derivation and discussion of the Lorenz equations	669
	27.2	The effect of uncertainties in the initial conditions	681
	27.3	Limitations of deterministic predictability of the	
		atmosphere	683
	27.4	Basic equations of the approximate stochastic	
		dynamic method	689
	27.5	Problems	692
		ers to Problems	693
		f frequently used symbols	702
		ences and bibliography	706

xiv