FLUID DYNAMICS FOR PHYSICISTS

DIII 249

DK 551, 511. 32

FLUID DYNAMICS FOR PHYSICISTS

T. E. FABER

Cavendish Laboratory and Corpus Christi College, Cambridge

322/3971 INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITÄT HANNOVER HERRENHÄUSER STR. 2 - 30419 HANNOVER

Contents

		Preface	0	page xv
		Mathematical Conventions		xix
		Symbols		xxiii
1	A bir	d's eye view		
	1.1	Introduction		1
	1.2	What is a fluid?		2
	1.3	Some facts about stress		4
	1.4	Statement of the syringe problem: Mach and Reynolds		
		Numbers		6
	1.5	Dimensional analysis and dynamical similarity		8
	1.6	Streaklines, streamlines, pathlines, and lines of flow		12
	1.7	Bernoulli's theorem		14
	1.8	When is compressibility negligible?		16
	1.9	When are shear stresses negligible?		18
	1.10	Potential flow		21
	1.11	The no-slip boundary condition at fluid–solid interfaces		23
	1.12	Boundary layers		25
	1.13	Poiseuille's law		29
	1.14	The syringe problem answered		31
	1.15	Instabilities and turbulence		32
	1.16	Summary		34
		Further reading		36
-	701			
2	The	Euler fluid		27
	2.1	The model		57
	2.2	The continuity condition		37
	2.3	Euler's equation		38

ix

CONTENTS	
----------	--

	2.4	The operator D/Dt	38
	2.5	Transverse pressure gradients in steady flow	40
	2.6	Floating objects	43
	2.7	The plug-hole vortex	44
	2.8	Bernoulli's theorem revisited	46
	2.9	Hydrostatic equilibrium and excess pressure	49
	2.10	Devices for measuring rates of flow	49
	2.11	Cavitation	54
	2.12	Water jets, sheets and bells	56
	2.13	Fans and windmills	61
	2.14	Gravity waves on shallow water	65
	2.15	When is surface tension negligible?	66
	2.16	Bores and hydraulic jumps	67
	2.17	The Coanda effect	73
		Further reading	77
3	Cas	dynamics	
5	3 1	Introduction to compressible flow	70
	3.2	Isothermal versus adjabatic flow	/0 01
	33	Bernoulli's theorem for compressible gas flow	01
	3.4	The atmospheric lapse rate	80
	3.5	Choked flow through a constriction	00
	3.6	The development and decay of a shock front	03
	3.7	Momentum transfer by sound waves	00
	3.8	Normal shock fronts in gases	101
	3.9	Shock fronts generated by explosions	101
	3.10	Oblique shock fronts	107
	3.11	Mach's construction	109
	3.12	Supersonic flow past thin plates	111
	3.13	Rockets	115
		Further reading	118
4	Pote	itial flow	
	4.1	The use of potentials to describe flow	119
	4.2	Kelvin's circulation theorem	120
	4.3	Bernoulli's theorem for unsteady potential flow	122
	4.4	Sources and sinks	123
	4.5	Magnetostatic analogies	127
	4.6	Some analytical solutions of Laplace's equation	129
	4.7	Potential flow round a sphere	133

CON	TENT	S

	4.8	The virtual mass of an accelerating solid body	137
	4.9	The Rayleigh disc	141
	4.10	Multi-valued potentials in electromagnetism	144
	4.11	Vortex lines	145
	4.12	The Magnus effect	147
	4.13	Free vortex lines with cores	150
	4.14	Behaviour of free vortex lines	155
	4.15	Smoke rings	157
		Further reading	161
5	Surfa	ace waves	
	5.1	The propagation of wave groups in one dimension	162
	5.2	Boundary conditions	166
	5.3	Gravity waves, 1 ($ \zeta \ll \lambda \ll d, \lambda \gg \lambda^*$)	170
	5.4	Ripples ($ \zeta \ll \lambda \ll d, \lambda \ll \lambda^*$)	173
	5.5	Waves on a liquid-fluid interface	174
	5.6	Gravity waves, 2 ($ \zeta \ll \lambda \approx d$)	176
	5.7	Gravity waves, 3 ($ \zeta \approx \lambda \ll d$)	177
	5.8	Solitary waves $(\zeta \approx \lambda \approx d)$	179
	5.9	Ship waves in canals	182
	5.10	Wave resistance	186
	5.11	Ship waves on open water: the Kelvin wedge	188
	5.12	Mach's construction revisited	192
		Further reading	194
6	Visco	osity	
	6.1	Shear stresses in Newtonian fluids	195
	6.2	Stress and rate of deformation as tensors	198
	6.3	Bulk viscosity	201
	6.4	The Navier–Stokes equation	202
	6.5	Viscous dissipation	204
	6.6	Laminar viscous flow, 1 (planar laminae)	206
	6.7	Hydrodynamic lubrication	214
	6.8	Hele Shaw flow	218
	6.9	Laminar viscous flow, 2 (cylindrical laminae)	220
	6.10	The Ekman layer	225
	6.11	Creeping flow past a sphere: Stokes's law	227
	6.12	The viscosity of suspensions	232
	6.13	Percolation	236
		Further reading	238

CONTENTS	
----------	--

7	Vort	icity	
	7.1	Lines of vorticity	240
	7.2	Boundary layers on plates	243
	7.3	Boundary layer separation and eddy formation	252
	7.4	Steady eddies behind cylinders and spheres	256
	7.5	Eddy shedding by cylinders and spheres	259
	7.6	Turbulent wakes behind cylinders and spheres	261
	7.7	Submerged jets revisited	263
	7.8	Drag forces	264
	7.9	Techniques for drag reduction	268
	7.10	Starting, stopping and trailing vortices	270
	7.11	Wing theory	273
	7.12	The Magnus effect revisited	279
	7.13	Tealeaves and suchlike	283
	7.14	Acoustic streaming	285
		Further reading	288
8	Insta	bilities	
	8.1	Stability, instability and overstability	289
	8.2	The Rayleigh–Taylor instability	293
	8.3	The Rayleigh–Plateau instability	295
	8.4	The Saffman–Taylor instability	297
	8.5	Thermal convection – an introduction	302
	8.6	Convection in an open vertical slot	309
	8.7	The Rayleigh–Bénard instability	314
	8.8	Marangoni convection	322
	8.9	Bénard convection in binary fluids	324
	8.10	The Taylor–Couette instability	328
	8.11	The Kelvin–Helmholtz instability	331
	8.12	Examples of the Kelvin–Helmholtz instability	336
	8.13	The Tollmien–Schlichting instability	340
	8.14	The Benjamin–Feir instability	341
		Further reading	342
9	Turb	ulence	
	9.1	Introduction	343
	9.2	Period doubling and intermittency in Bénard convection	349
	9.3	The transition to turbulence in pipe flow	351
	9.4	The energy cascade in homogeneous turbulence	354
	9.5	Eddy viscosity and the mixing length	358
	9.6	A simple illustration of the scaling approach	362

CON	TEN	TS

	9.7	Turbulent jets, wakes and mixing layers	366
	9.8	Turbulent flow between parallel plates and in pipes	369
	9.9	Turbulent boundary layers	375
	9.10	Bénard convection at large Rayleigh Numbers	378
		Further reading	383
10	Non-	Newtonian fluids	
	10.1	Introduction	384
	10.2	Linear viscoelasticity	387
	10.3	Viscosity in a uniaxial liquid	390
	10.4	A theory of flow birefringence	394
	10.5	Flow alignment: a general approach	398
	10.6	Non-Newtonian effects in polymeric liquids	400
	10.7	Non-Newtonian effects in suspensions	407
	10.8	Flow phenomena in nematic liquid crystals	409
	10.9	Plasmas in magnetic fields	413
	10.10	Liquid helium	415
		Further reading	422
Ap	pendix	One-dimensional sound waves in gases	
	A.1	Small-amplitude theory excluding attenuation	424
	A.2	Riemann's treatment for arbitrary amplitudes	425
	A.3	Attenuation due to thermal conduction	428
	A.4	Attenuation due to viscosity	431
	A.5	Additional attenuation mechanisms	432
		Further reading	435

Index

436