

DTI 247

DK551.511.32

Hydrodynamics and Nonlinear Instabilities

EDITED BY

CLAUDE GODRÈCHE

Centre d'Etudes de Saclay

PAUL MANNEVILLE

Ecole Polytechnique

322/3967 FUR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITÄT HANNOVER HERRENMAUSER STR. 2 - 30419 HANNOVER

Contents

	Pret	face	xiii
	1.0		
	Con	tributors	xvi
	Ove	erview	1
	<i>P. M</i>	lanneville	
1	An	introduction to hydrodynamics	25
	<i>B. C</i>	lastaing	
1	Wha	at is a fluid?	25
с, î	1.1	Introduction	25
	1.2	Viscosity and Reynolds number	26
	1.3	The basic equations	28
	1.4	Momentum budget: two examples	29
	1.5	Energy and entropy budget	32
	1.6	The Navier-Stokes equation	34
	1.7	Life at low Reynolds numbers	35
2	The	mechanisms	40
	2.1	Vorticity: diffusion, freezing, sources	40
	2.2	Energy transfer in turbulence	44
	2.3	Boundary layers and their separation	48
	2.4	Compressibility	54
3	Flow	measurement methods	57
	3.1	Introduction	57
	3.2	Hot wire anemometer	58
	3.3	Doppler laser anemometer	61
4	Dim	ensional analysis	62
	4.1	Buckingham's theorem	62
	4.2	A simple example	63
	4.3	A less simple case	64
	4.4	Turbulent boundary layer	65
	4.5	Barenblatt's second kind self-similarity	67

~		
(0	nter	t.s
00	10001	000

5	Mod	ern approaches in turbulence	69
	5.1	The Lorenz model	69
	5.2	Statistical mechanics for turbulence	71
	5.3	Developed turbulence	74
	Refe	erences	79
2	Hyd	lrodynamic instabilities in open flows	81
	P. H	uerre and M. Rossi	
1	Intro	oduction	81
	1.1	An open flow example: the pipe flow experiment of Reynolds	84
	1.2	A closed flow example: Taylor-Couette flow between	
		rotating cylinders	90
2	Phe	nomenology of open flows	94
	2.1	The mixing layer as a prototype of noise amplifier	96
	2.2	The wake behind a bluff body as a prototype of	
		hydrodynamic oscillator	104
	2.3	Plane channel flow as a prototype of a viscous instability	111
3	Fund	lamental concepts	116
	3.1	Some formal definitions	117
	3.2	Linear instability concepts	119
	3.3	Nonlinear instability concepts	145
4	Invis	scid instabilities in parallel flows	152
	4.1	Squire's transformation	154
	4.2	The two-dimensional stability problem: Rayleigh's equation	155
	4.3	Rayleigh's inflection point criterion	158
	4.4	Fjørtoft's criterion	160
	4.5	Jump conditions at an interface. Application to the vortex sheet	164
5	The	spatial mixing layer	169
	5.1	Linear instability of parallel mixing layers	169
	5.2	Weakly non parallel WKBJ formulation	186
	5.3	Secondary instabilities	193
6	The	wake behind a bluff body	198
	6.1	Linear instability of locally parallel wakes	200
	6.2	Global instability concepts for spatially developing flows	207
	6.3	Phase dynamics of wake patterns	220
7	Visc	ous instabilities in parallel flows	226
	7.1	Squire's transformation	229
	7.2	The two-dimensional stability problem: the Orr-Sommerfeld	
		equation	229
	7.3	A first look at the instability mechanism: the energy equation	230
	7.4	Heuristic analysis of the structure of two-dimensional	
		Tollmien–Schlichting waves	232

viii

~		
(0	nte	onts
00	1000	10000

8	Plan	e channel flow	243
	8.1	Primary linear instability	243
	8.2	Weakly nonlinear analysis	248
	8.3	Finite-amplitude two-dimensional vortical states	256
	8.4	Universal elliptical instability	266
	8.5	Fundamental and subharmonic secondary instability routes	281
	Refe	rences	288
2	Acu	mototic techniques in poplinear problems:	
J	Asy	a illustrativa examples	205
	Som	le mustrative examples	290
	V. H	akim	
	Intro	oduction	295
1	Bou	ndary layers and matched asymptotic expansions	295
	1.1	An elementary example of a boundary layer; inner and outer	
		expansions	297
	1.2	Landau and Levich coating flow problem	300
2	Mult	tiscale analysis and envelope equations	309
	2.1	The period of the pendulum by the multiscale method	310
	2.2	The nonlinear Schrödinger equation as an envelope equation	
		for small amplitude gravity waves in deep water	312
	2.3	Amplitude equation from a more general viewpoint	323
3	Fron	ts and localized states	325
	3.1	Front between linearly stable states	325
	3.2	Invasion of an unstable state by a stable state	338
4	Expo	onentially small effects and complex-plane boundary layers	s 346
	4.1	Introduction	346
	4.2	The example of the geometric model of interface motion	349
	4.3	The viscous finger puzzle	359
	4.4	Miscellaneous examples of exponential asymptotics	
		in physical problems	370
	Refe	rences	382
4	Patt	tern forming instabilities	387
	S. Fa	NIVE S	
1	Intro	aduation	387
T	1 1	Example: the Fereday instability	301
	1.1	Analogy with phase transitions: emplitude equations	301
	1.2	Long wavelength neutral modes: phase dynamics	300
	1.0	Long-wavelength neutral modes: phase dynamics	392
0	1.4 N1	Locanzed nonlinear structures	204
4	1 1 ON	Van der Del cocillator	205
	2.1	van der rol oscillator	395
	2.2	raneuric oscillators	401

ix

Co	n	to	n	te
00	10	10	10	10

	2.3	Frequency locking	405
3	Non	linear waves in dispersive media	410
	3.1	Evolution of a wave-packet	412
	3.2	The side-band or Benjamin–Feir instability	417
	3.3	Solitary waves	420
4	Cell	ular instabilities, a canonical example:	
	Rayl	eigh-Bénard convection	424
	4.1	Rayleigh-Bénard convection	424
	4.2	Linear stability analysis	429
	4.3	Nonlinear saturation of the critical modes	432
5	Amp	blitude equations in dissipative systems	438
	5.1	Stationary instability	439
	5.2	Oscillatory instability	445
	5.3	Parametric instability	447
	5.4	Neutral modes at zero wavenumber.	
		Systems with Galilean invariance	449
	5.5	Conserved order parameter	450
	5.6	Conservative systems and dispersive instabilities	452
6	Seco	ndary instabilities of cellular flows:	
	Eckl	haus and zigzag instabilities	454
	6.1	Broken symmetries and neutral modes	454
	6.2	Phase dynamics	456
	6.3	Eckhaus instability	457
	6.4	The zigzag instability	469
7	Drif	t instabilities of cellular patterns	473
	7.1	Introduction	473
	7.2	A drift instability of stationary patterns	475
	7.3	The drift instability of a parametrically excited standing wave	476
	7.4	The drift bifurcation	478
	7.5	Oscillatory phase modulation of periodic patterns	479
8	Non	linear localized structures	481
	8.1	Different types of nonlinear localized structures	481
	8.2	Kink dynamics	484
	8.3	Localized structures in the vicinity of a subcritical bifurcation	486
	Refe	erences	489
5	An	introduction to the instability of flames,	
	sho	cks, and detonations	493
	G. J	oulin and P. Vidal	
1	Intro	oduction and overview	493
2	Basi	c equations	495
	2 1	Conservation laws for reactive fluids	495

Х

2.2	Weak forms	498
3 Subsonic versus supersonic traveling waves		499
3.1	The $(p-V)$ plane	499
3.2	Various waves	500
3.3	Shocks, detonations, and deflagrations	501
4 Flan	nes	503
4.1	Phenomenology	503
4.2	Minimal model and isobaric approximation	507
4.3	The basic eigenvalue problem	512
4.4	Jumps across the reaction layer	527
4.5	Diffusive instabilities	531
4.6	A conductive instability	540
4.7	Hydrodynamic instability	546
4.8	Body forces	568
4.9	Hydrodynamic influence of boundaries	577
4.10) Large-scale flow geometry	580
4.11	Prospects	585
5 Sho	ck waves	592
5.1	Phenomenology	592
5.2	Shock formation	594
5.3	Majda and Rosales' model problem	612
5.4	D'yakov-Kontorovich's instabilities	614
5.5	Prospects	626
6 Dete	onations	627
6.1	Phenomenology	627
6.2	Chapman-Jouguet model and sonicity condition	631
6.3	Analogs of D'yakov–Kontorovich's instabilities	638
6.4	Brun's model for autonomous diverging waves	641
6.5	Zel'dovich-Von Neumann-Doering model	649
6.6	Chemistry-related instabilities	657
6.7	Recent results and prospects	663
Refe	erences	667
Inde	2x	675

Contents

xi