THE INSTITUTE OF MATHEMATICS & ITS APPLICATIONS CONFERENCE SERIES

New Series Number 52

STABLY STRATIFIED FLOW/S

Flow and Dispersion over Topography

Edited by I. P. CASTRO and N. J. ROCKLIFF

Stably Stratified Flows: Flow and Dispersion over Topography

Based on the proceedings of the fourth conference on Stably Stratified Flows, organized by the Institute of Mathematics and its Applications and held at the University of Surrey in September, 1992.

Edited by

I. P. CASTRO and N. J. ROCKLIFF

Department of Mechanical Engineering, University of Surrey, UK

3834 INSTITUT OGIE U. KLIMATOLOGIE UNIVERSITÄT HANNOVER HERRENHÄUSER STR. 2 - 30419 HANROVER

CLARENDON PRESS • OXFORD • 1994

CONTENTS

Mechanisms for upstream effects in two-dimensional stratified flow by P.G. Baines	1
Mesoscale blocking ahead of mountain ridges by P.A. Taylor and K.W. Ayotte	15
Strongly stratified airflow over and around mountains by M. Greenslade	25
Steady and unsteady computations of strongly stratified flows over a vertical barrier by M.F. Paisley, I.P. Castro and N.J. Rockliff	39
Observations of internal gravity waves over an Antarctic ice shelf using a microbarograph array by J.M. Rees, I. McConnell, P.S. Anderson and J.C. King	61
Spontaneous generation of internal gravity waves in a wind tunnel by H. Makita, S. Mori and A. Yahagi	81
Surface boundary conditions in stably-stratified environmental flows by J.C. King, S.D. Mobbs and N.R. Edwards	93
The sensitivity of stable boundary layers to small slopes and other influences by S.H. Derbyshire and N. Wood	105
Simple models of flow over topography driven by horizontal density gradients by A. Kay	119
Shallow flow over general topography with applications to monotonic mountains by A.S. Broad, D. Porter and M.J. Sewell	133
Numerical simulations of stably-stratified rotating turbulence by O. Métais, J.J. Riley and M. Lesieur	139
Modelling turbulent stratified flow over buildings and hills by D.D. Apsley	153
Turbulence, waves and mixing at stratified density interfaces: modelling and experiments by H.J.S. Fernando, J.C.R. Hunt and D.J. Carruthers	175

Wind and turbulence structure in stably stratified flow in the lee of high mountains by AS. Smedman	201
The shallow water approximations in dense gas dispersion over complex terrain by R.K.S. Hankin and R.E. Britter	223
Dispersion of industrial gases over variable topography by T.B. Staples and A.M. Riddle	247
Modelling turbulent diffusion from a point source in strongly stratified flow around a three dimensional arbitrarily-shaped hill by W.S. Weng and D.J. Carruthers	263
On application of the Langevin equation to turbulent dispersion in nonhomogeneous conditions (Thomson 1984 model revisited) by F. Tampieri, C. Scarani and U. Giostra	275
Effects produced by velocity covariance on a Lagrangian model of dispersion over obstacles by A. Cenedese, G. Leuzzi and P. Monti	291
Some observations of the influence of stratification on diffusion in building wakes by W.H. Snyder	301
Flow and dispersion around buildings in light wind conditions by A. Robins	325

Х