

Sir Horace Lamb

Cambridge Mathematical Library

HYDRODYNAMICS

BY

SIR HORACE LAMB, M.A., LL.D., Sc.D., F.R.S.

HONORARY FELLOW OF TRINITY COLLEGE, CAMBRIDGE; LATELY PROFESSOR OF MATHEMATICS IN THE VICTORIA UNIVERSITY OF MANCHESTER

SIXTH EDITION

293/3622 INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITÄT HANNOVER HERRENHÄUSER STR. 2 - 30419 HANNOVER

CONTENTS

Foreword, by R.A. Caflisch

xvii

CHAPTER I

THE EQUATIONS OF MOTION

ART.										PAGE
1, 2.	Fundamental property of a fluid									1
3.	The two plans of investigation									1
4-9.	'Eulerian' form of the equations	of	moti	on.	Dyna	amica	l eq	uation	ns.	
	Equation of continuity. Physic	cal e	quati	ons.	Surf	ace c	ondi	tions		2
10.	Equation of energy	•								8
10 a.	Transfer of momentum									10
11.	Impulsive generation of motion	•				•				10
12.	Equations referred to moving axes									12
13, 14.	'Lagrangian' form of the equation	s of	mot	ion a	and o	f the	equ	ation	of	
	continuity									12
15, 16.	Weber's transformation				•					14
16 a.	Equations in polar co-ordinates									15

CHAPTER II

INTEGRATION OF THE EQUATIONS IN SPECIAL CASES

17.	Velocity-potential. Lagrange's theorem	17
18, 19.	Physical and kinematical relations of ϕ	18
20.	Integration of the equations when a velocity-potential exists. Pressure-	
	equation	19
21-23.	Steady motion. Deduction of the pressure-equation from the principle	
	of energy. Limiting velocity	20
24.	Efflux of liquids; vena contracta	23
24 a. 25.	Efflux of gases	25
26-29.	Examples of rotating fluid; uniform rotation; Rankine's 'combined	
	vortex'; electromagnetic rotation	28

CHAPTER III

IRROTATIONAL MOTION

30.	Analysis of the differential motion of a fluid element into strain and	
	rotation	31
31, 32.	'Flow' and 'circulation.' Stokes' theorem	33
33.	Constancy of circulation in a moving circuit	35
34, 35.	Irrotational motion in simply-connected spaces; single-valued velocity-	
	potential	37

viii

ART.		PAGE
36-39.	Incompressible fluids; tubes of flow. ϕ cannot be a maximum or mini-	
	mum. The velocity cannot be a maximum. Mean value of ϕ over	
	a spherical surface	38
40, 41.	Conditions of determinateness of ϕ	41
42-46.	Green's theorem; dynamical interpretation; formula for kinetic energy.	
	Kelvin's theorem of minimum energy	43
47, 48.	Multiply-connected regions; 'circuits' and 'barriers'	49
49-51.	Irrotational motion in multiply-connected spaces; many-valued velocity-	
	potential; cyclic constants	50
52.	Case of incompressible fluids. Conditions of determinateness of ϕ .	53
53-55.	Kelvin's extension of Green's theorem ; dynamical interpretation ; energy	
	of an irrotationally moving liquid in a cyclic space	54
56-58.	'Sources' and 'sinks'; double sources. Irrotational motion of a liquid	
	in terms of surface-distributions of sources	57

CHAPTER IV

MOTION OF A LIQUID IN TWO DIMENSIONS

59.	Lagrange's stream-function	62
60, 60 a.	Relations between stream- and velocity-functions. Two-dimensional	
	sources. Electrical analogies	63
61.	Kinetic energy	66
62.	Connection with the theory of the complex variable	66
63, 64.	Simple types of motion, cyclic and acyclic. Image of a source in a circular	
	barrier. Potential of a row of sources	68
65, 66.	Inverse relations. Confocal curves. Flow from an open channel	72
67.	General formulae; Fourier method	75
68.	Motion of a circular cylinder, without circulation; stream-lines	76
69.	Motion of a cylinder with circulation; 'lift.' Trochoidal path under	
	a constant force	78
70.	Note on more general problems. Transformation methods; Kutta's	
	problem	80
71.	Inverse methods. Motion due to the translation of a cylinder; case of	
	an elliptic section. Flow past an oblique lamina; couple due to	
	fluid pressure	83
72.	Motion due to a rotating boundary. Rotating prismatic vessels of	
	various sections. Rotating elliptic cylinder in infinite fluid; general	
	case with circulation	86
72 a.	Representation of the effect at a distance of a moving cylinder by a	
	double source	90
72 b.	Blasius' expressions for the forces on a fixed cylinder surrounded by an	
	irrotationally moving liquid. Applications; Joukowski's theorem;	
	forces due to a simple source	91
73.	Free stream-lines. Schwarz' method of conformal transformation .	94
74-78.	Examples. Two-dimensional form of Borda's mouthpiece ; fluid issuing	
	from a rectilinear aperture; coefficient of contraction. Impact of	
	a stream on a lamina, direct and oblique; resistance. Bobyleff's	
	problem	96
79.	Discontinuous motions	105
80.	Flow on a curved stratum	108

CHAPTER V

IRROTATIONAL MOTION OF A LIQUID : PROBLEMS IN THREE DIMENSIONS

	THREE DIMENSIONS	
ART.		PAGE
81, 82.	Spherical harmonics. Maxwell's theory of poles	110
83.	Laplace's equation in polar co-ordinates	112
84, 85.	Zonal harmonics. Hypergeometric series	113
86.	Tesseral and sectorial harmonics	116
87, 88.	Conjugate property of surface harmonics. Expansions	118
89.	Symbolical solutions of Laplace's equation. Definite integral forms .	119
90, 91.	Hydrodynamical applications. Impulsive pressures over a spherical	
	surface. Prescribed normal velocity. Energy of motion generated .	120
91 a.	Examples. Collapse of a bubble. Expansion of a cavity due to internal	
00.00	pressure	122
92, 93.	Motion of a sphere in an infinite liquid; inertia coefficient. Effect of	
	a concentric rigid boundary	123
94–96.	Stokes' stream-function. Formulae in spherical harmonics. Stream-lines	
	of a sphere. Images of a simple and a double source in a fiscal	
1327	sphere. Forces on the sphere	125
97.	Rankine's inverse method	130
98, 99.	Motion of two spheres in a liquid. Kinematical formulae. Inertia	
	coefficients	130
100, 101.	Cylindrical harmonics. Solutions of Laplace's equation in terms of	
	Bessel's functions. Expansion of an arbitrary function	134
102.	Hydrodynamical examples. Flow through a circular aperture. Inertia	
	coefficient of a circular disk	137
103-106.	Ellipsoidal harmonics for an ovary ellipsoid. Translation and rotation	
	of an ovary ellipsoid in a liquid	139
107-109.	Harmonics for a planetary ellipsoid. Flow through a circular aperture.	
	Stream-lines of a circular disk. Translation and rotation of a	
	planetary ellipsoid	142
110.	Motion of a fluid in an ellipsoidal vessel	146
111.	General orthogonal co-ordinates. Transformation of $\nabla^2 \phi$	148
112.	General ellipsoidal co-ordinates; confocal quadrics.	149
113.	Flow through an elliptic aperture	150
114, 115.	Translation and rotation of an ellipsoid in liquid; inertia coefficients .	152
116.	References to other problems	156
	APPENDIX: The hydrodynamical equations referred to general ortho-	
	gonal co-ordinates	156

CHAPTER VI

ON THE MOTION OF SOLIDS THROUGH A LIQUID: DYNAMICAL THEORY

117, 118.	Kinematical formulae for the case of a single body .				160
119.	Theory of the 'impulse'				161
120.	Dynamical equations relative to axes fixed in the body .				162
121, 121 a.	Kinetic energy; coefficients of inertia. Representation	of	the	fluid	
	motion at a distance by a double source				163
122, 123.	Components of impulse. Reciprocal formulae				166

ART.		PAGE
124.	Expressions for the hydrodynamic forces. The three permanent transla-	
	tions; stability	168
125.	The possible modes of steady motion. Motion due to an impulsive couple	170
126.	Types of hydrokinetic symmetry	172
127-129.	Motion of a solid of revolution. Stability of motion parallel to the axis.	
	Influence of rotation. Other types of steady motion	174
130.	Motion of a 'helicoid'	179
131.	Inertia coefficients of a fluid contained in a rigid envelope	180
132–134.	Case of a perforated solid with cyclic motion through the apertures.	
	Steady motion of a ring; condition for stability	180
134 a.	The hydrodynamic forces on a cylinder moving in two dimensions .	184
135, 136.	Lagrange's equations of motion in generalized co-ordinates. Hamiltonian	
	principle. Adaptation to hydrodynamics	187
137, 138.	Examples. Motion of a sphere near a rigid boundary. Motion of two	
	spheres in the line of centres	190
139–141.	Modification of Lagrange's equations in the case of cyclic motion;	
	ignoration of co-ordinates. Equations of a gyrostatic system	192
142, 143.	Kineto-statics. Hydrodynamic forces on a solid immersed in a non-	
	uniform stream	197
144.	Note on the intuitive extension of dynamic principles	201

CHAPTER VII

VORTEX MOTION

145.	'Vortex-lines' and 'vortex-filaments'; kinematical properties	202
146.	Persistence of vortices; Kelvin's proof. Equations of Cauchy, Stokes,	
	and Helmholtz. Motion in a fixed ellipsoidal envelope, with uniform	
	vorticity	203
147.	Conditions of determinateness	207
148, 149.	Velocity in terms of expansion and vorticity; electromagnetic analogy.	
1.01	Velocities due to an isolated vortex	208
150.	Velocity-potential due to a vortex	211
151.	Vortex-sheets	212
152, 153.	Impulse and energy of a vortex-system	214
154, 155.	Rectilinear vortices. Stream-lines of a vortex-pair. Other examples .	219
156.	Investigation of the stability of a row of vortices, and of a double row.	
	Kármán's 'vortex-street'.	224
157.	Kirchhoff's theorems on systems of parallel vortices	229
158, 159.	Stability of a columnar vortex of finite section; Kirchhoff's elliptic	
1 A	vortex	230
159 a.	Motion of a solid in a liquid of uniform vorticity	233
160.	Vortices in a curved stratum of fluid	236
161-163.	Circular vortices; potential- and stream-function of an isolated circular	
	vortex; stream-lines. Impulse and energy. Velocity of translation	
	of a vortex-ring.	236
164.	Mutual influence of vortex-rings. Image of a vortex-ring in a sphere .	242
165.	General conditions for steady motion of a fluid. Cylindrical and spherical	
	vortices	243
166.	References	246
166 a.	Bjerknes' theorems	247
167.	Clebsch's transformation of the hydrodynamical equations	248

X

CHAPTER VIII

TIDAL WAVES

ART.		PAGE
168.	General theory of small oscillations; normal modes; forced oscillations.	250
169-174.	Free waves in uniform canal; effect of initial conditions; measuring of	
	the approximations; energy	254
175.	Artifice of steady motion	261
176.	Superposition of wave-systems; reflection	262
177-179.	Effect of disturbing forces; free and forced oscillations in a finite canal.	263
180-184.	Canal theory of the tides. Disturbing potentials. Tides in an equatorial	
	canal, and in a canal parallel to the equator; semi-diurnal and	
	diurnal tides. Canal coincident with a meridian; change of mean	
	level; fortnightly tide. Equatorial canal of finite length; lag of the	
	tide	267
185, 186.	Waves in a canal of variable section. Examples of free and forced	
	oscillations; exaggeration of tides in shallow seas and estuaries .	273
187, 188.	Waves of finite amplitude; change of type in a progressive wave. Tides	
	of the second order	278
189, 190.	Wave motion in two horizontal dimensions; general equations. Oscilla-	
	tions of a rectangular basin	282
191, 192.	Oscillations of a circular basin; Bessel's functions; contour lines. Elliptic	
	basin; approximation to slowest mode	284
193.	Case of variable depth. Circular basin	291
194-197.	Propagation of disturbances from a centre; Bessel's function of the second	
	kind. Waves due to a local periodic pressure. General formula for	
	diverging waves. Examples of a transient local disturbance	293
198-201.	Oscillations of a spherical sheet of water; free and forced waves. Effect	
	of the mutual gravitation of the water. Reference to the case of a sea	
	bounded by meridians and parallels	301
202, 203.	Equations of motion of a dynamical system referred to rotating axes .	307
204–205 a.	Small oscillations of a rotating system ; stability 'ordinary' and 'secular.'	
	Effect of a small degree of rotation on types and frequencies of	
	normal modes	309
205 b.	Approximate calculation of frequencies	313
206.	Forced oscillations	316
207, 208.	Hydrodynamical examples; tidal oscillations of a rotating plane sheet of	
	water; waves in a straight canal	317
209-211.	Rotating circular basin of uniform depth; free and forced oscillations .	320
212.	Circular basin of variable depth	326
212 a.	Examples of approximate procedure	328
213, 214.	Tidal oscillations on a rotating globe. Laplace's kinetic theory	330
215-217.	Symmetrical oscillations. Tides of long period	333
218-221.	Diurnal and semi-diurnal tides. Discussion of Laplace's solution	340
222, 223.	Hough's investigations; extracts and results	347
223 a.	References to further researches	352
224.	Modifications of the kinetic theory due to the actual configuration of the	
	ocean; question of phase	353
225, 226.	Stability of the ocean. Remarks on the general theory of kinetic stability .	355
	APPENDIX: On Tide-generating Forces	358

CHAPTER IX

SURFACE WAVES

ART.		PAGE
227.	The two-dimensional problem; surface conditions	363
228.	Standing waves; lines of motion	364
229, 230.	Progressive waves; orbits of particles. Wave-velocity; numerical tables.	
	Energy of a simple-harmonic wave-train	366
231.	Oscillations of superposed fluids	370
232.	Instability of the boundary of two currents	373
233, 234.		375
235.	Artifice of steady motion	378
236, 237.	Group-velocity. Transmission of energy	380
238-240.	The Cauchy-Poisson wave-problem ; waves due to an initial local eleva-	
	tion, or to a local impulse	384
241.	Kelvin's approximate formula for the effect of a local disturbance in	
	a linear medium. Graphical constructions	395
242-246.	Surface-disturbance of a stream. Case of finite depth. Effect of inequali-	
	ties in its bed	398
247.	Waves due to a submerged cylinder	410
248, 249.	General theory of waves due to a travelling disturbance. Wave-	
,	resistance	413
250.	Waves of finite height; waves of permanent type. Limiting form .	417
251.	Gerstner's rotational waves	421
252, 253.	Solitary waves. Oscillatory waves of Korteweg and De Vries	423
254.	Helmholtz' dynamical condition for waves of permanent type	427
255, 256.	Wave-propagation in two horizontal dimensions. Effect of a local dis-	
,	turbance. Effect of a travelling pressure-disturbance; wave-patterns	429
256a, 256b	o. Travelling disturbances of other types. Ship-waves. Wave-resistance.	
,	Effect of finite depth on the wave-pattern	437
257-259.	Standing waves in limited masses of water. Transverse oscillation in	
	canals of triangular, and semi-circular section	440
260, 261.	Longitudinal oscillations; canal of triangular section; edge-waves .	445
262-264.	Oscillations of a liquid globe, lines of motion. Ocean of uniform depth	
	on a spherical nucleus	450
265.	Capillarity. Surface-condition	455
266.	Capillary waves. Group-velocity	456
267, 268.	Waves under gravity and capillarity. Minimum wave-velocity. Waves	
,	on the boundary of two currents	458
269.	Waves due to a local disturbance. Effect of a travelling disturbance;	100
	waves and ripples	462
270-272.	Surface-disturbance of a stream ; formal investigation. Fish-line problem.	102
-+ · · · · · · · · ·	Wave-patterns	464
273, 274	Vibrations of a cylindrical column of liquid. Instability of a jet	471
275		473
	Oscillations of a liquid globe, and of a bubble	110

CHAPTER X

	WAVES OF EXPANSION	
ART.		PAGE
276-280.	Plane waves; velocity of sound; energy of a wave-system	476
281-284.	Plane waves of finite amplitude; methods of Riemann and Earnshaw.	
	Condition for permanence of type; Rankine's investigations. Waves	
	of approximate discontinuity	481
285, 286.	Spherical waves. Solution in terms of initial conditions	489
287, 288.	General equation of sound-waves. Equation of energy. Determinateness	
	of solutions	492
289.	Simple-harmonic vibrations. Simple and double sources. Emission of	
	energy	496
290.	Helmholtz' adaptation of Green's theorem. Velocity-potential in terms	
	of surface-distributions of sources. Kirchhoff's formula	498
291.	Periodic disturbing forces	501
292.	Applications of spherical harmonics. General formulae	503
293.	Vibrations of air in a spherical vessel. Vibrations of a spherical stratum	506
294.	Propagation of waves outwards from a spherical surface; attenuation	
	due to lateral motion	508
295.	Influence of the air on the oscillations of a ball-pendulum; correction for	
	inertia; damping	510
296-298.	Scattering of sound-waves by a spherical obstacle. Impact of waves on	
	a movable sphere; case of synchronism	511
299, 300.	Diffraction when the wave-length is relatively large: by a flat disk,	
	by an aperture in a plane screen, and by an obstacle of any form .	517
301.	Solution of the equation of sound in spherical harmonics. Conditions at	
	a wave-front	521
302.	Sound-waves in two dimensions. Effect of a transient source; comparison	
	with the one- and three-dimensional cases	524
303, 304.	Simple-harmonic vibrations; solutions in Bessel functions. Oscillating	
	cylinder. Scattering of waves by a cylindrical obstacle	527
305.	Approximate theory of diffraction of long waves in two dimensions.	
	Diffraction by a flat blade, and by an aperture in a thin screen .	531
306, 307.	Reflection and transmission of sound-waves by a grating	533
308.	Diffraction by a semi-infinite screen	538
309, 310.	Waves propagated vertically in the atmosphere; 'isothermal' and 'con-	
	vective' hypotheses	541
311, 311a, 3	B12. Theory of long atmospheric waves	547
313.	General equations of vibration of a gas under constant forces.	554
314, 315.	Oscillations of an atmosphere on a non-rotating globe	556
316.	Atmosphere tides on a rotating globe. Possibility of resonance	558

CHAPTER XI

VISCOSITY

ART.		PAGE
317, 318.	Theory of dissipative forces. One degree of freedom; free and forced	
	oscillations. Effect of friction on phase	562
319.	Application to tides in equatorial canal; tidal lag and tidal friction .	565
320.	Equations of dissipative systems in general; frictional and gyrostatic	
	terms. Dissipation function	567
321.	Oscillations of a dissipative system about a configuration of absolute	
	equilibrium	568
322.	Effect of gyrostatic terms. Example of two degrees of freedom; dis-	000
922.	turbing forces of long period	570
323-325.	Viscosity of fluids; specification of stress; formulae of transformation .	571
326, 327.	The stresses as linear functions of rates of strain. Coefficient of viscosity.	011
320, 327.	Boundary-conditions; question of slipping	574
000		574
328.	Dynamical equations. The modified Helmholtz equations; diffusion of	
	vorticity	576
329.	Dissipation of energy by viscosity	579
330, 330 a.	Flow of a liquid between parallel planes. Hele Shaw's experiments.	
	Theory of lubrication; example	581
331, 332.	Flow through a pipe of circular section; Poiseuille's laws; question of	
	slipping. Other forms of section .	585
333, 334.		587
334 a.	Examples of variable motion. Diffusion of a vortex. Effect of surface-	
	forces on deep water	590
335, 336.	Slow steady motion; general solution in spherical harmonics; formulae	
	for the stresses	594
337.	Rectilinear motion of a sphere; resistance; terminal velocity; stream-	
	lines. Case of a liquid sphere; and of a solid sphere, with slipping	597
338.	Method of Stokes; solutions in terms of the stream-function	602
339.	Steady motion of an ellipsoid	604
340, 341.	Steady motion in a constant field of force	605
342.	Steady motion of a sphere; Oseen's criticism, and solution	608
	Steady motion of a cylinder, treated by Oseen's method. References to	
,	other investigations	614
344.	Dissipation of energy in steady motion; theorems of Helmholtz and	
011	Korteweg. Rayleigh's extension	617
345-347.	Problems of periodic motion. Laminar motion, diffusion of vorticity.	5 -
010 011.	Oscillating plane. Periodic tidal force; feeble influence of viscosity	
	in rapid motions	619
348-351.	Effect of viscosity on water-waves. Generation of waves by wind. Calming	010
040-001.	an	623
950 959	effect of oil on waves. Periodic motion with a spherical boundary; general solution in spherical	020
352, 353.		632
	harmonics.	004
354.	Applications; decay of motion in a spherical vessel; torsional oscillations	007
	of a hollow sphere containing liquid	637
355.	Effect of viscosity on the oscillations of a liquid globe	639
356.	Effect on the rotational oscillations of a sphere, and on the vibrations of	041
	a pendulum	641
357.	Notes on two-dimensional problems	644

ART.		PAGE
358.	Viscosity in gases; dissipation function	645
359, 360.	Damping of plane waves of sound by viscosity; combined effect of	
	viscosity and thermal conduction	646
360 a.	Waves of permanent type, as affected by viscosity alone	650
360 b.	Absorption of sound by porous bodies	652
361.	Effect of viscosity on diverging waves	654
362, 363.	Effect on the scattering of waves by a spherical obstacle, fixed or free .	657
364.	Damping of sound-waves in a spherical vessel	661
365, 366.	Turbulent motion. Reynolds' experiments; critical velocities of water	
	in a pipe; law of resistance. Inferences from theory of dimensions	663
366 a.	Motion between rotating cylinders	667
366 b.	Coefficient of turbulence; 'eddy' or 'molar' viscosity	668
366 c.	Turbulence in the atmosphere; variation of wind with height	669
367, 368.	Theoretical investigations of Rayleigh and Kelvin	670
369.	Statistical method of Reynolds	674
370.	Resistance of fluids. Criticism of the discontinuous solutions of Kirchhoff	
	and Rayleigh	678
370 a.	Kármán's formula for resistance	680
370 b.	Lift due to circulation	681
371.	Dimensional formulae. Relations between model and full-scale	682
371a, b, c.	The boundary layer. Note on the theory of the aerofoil	684
371d.e.f.	g. Influence of compressibility. Failure of stream-line flow at high speeds	691

CHAPTER XII

ROTATING MASSES OF LIQUID

Forms of relative equilibrium. General theorems	697
Formulae relating to attraction of ellipsoids. Potential energy of an	
A	700
-	
and angular momentum; numerical tables	701
Jacobi's ellipsoids. Linear series of ellipsoidal forms of equilibrium.	
	704
	707
General problem of relative equilibrium; Poincaré's investigation. Linear	
	710
	710
	713
	717
Dirichlet's investigations; references. Finite gravitational oscillations	
of a liquid ellipsoid without rotation. Oscillations of a rotating	
ellipsoid of revolution	719
Dedekind's ellipsoid. The irrotational ellipsoid. Rotating elliptic cylinder	721
	724
	728
cle proci	140
AUTHORS CITED	731
	734
	 Formulae relating to attraction of ellipsoids. Potential energy of an ellipsoidal mass Maclaurin's ellipsoids. Relations between eccentricity, angular velocity and angular momentum; numerical tables Jacobi's ellipsoids. Linear series of ellipsoidal forms of equilibrium. Numerical results Other special forms of relative equilibrium; Poincaré's investigation. Linear series of equilibrium forms; limiting forms and forms of bifurcation. Exchange of stabilities Application to a rotating system. Secular stability of Maclaurin's and Jacobi's ellipsoids. The pear-shaped figure of equilibrium Small oscillations of a rotating ellipsoidal mass; Poincaré's method. References Dirichlet's investigations; references. Finite gravitational oscillations of a liquid ellipsoid without rotation. Oscillations of a rotating ellipsoid of revolution Dedekind's ellipsoid. The irrotational ellipsoid. Rotating elliptic cylinder Free and forced oscillations of a rotating ellipsoid shell containing liquid. Precession AUTHORS CITED

XV