THE INSTITUTE OF MATHEMATICS & ITS APPLICATIONS MONOGRAPH SERIES

AN INFORMAL INTRODUCTION TO THEORETICAL FLUID MECHANICS JAMES LIGHTHILL

2 3 9 3/64 INSTITUT FUR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITAT HANNOVER HERRENHAUSER STR. 2 - 3000 HANNOVER 21

An Informal Introduction to Theoretical Fluid Mechanics

James Lighthill

Provost, University College London

CLARENDON PRESS · OXFORD 1986

Contents

1	Principles of mechanics applied to lumps of fluid	1
	1.1 Elementary mechanics of a fluid in equilibrium	1
	1.2 Flow through a contraction in a horizontal pipe	3
	1.3 The total head of a steady stream	5
	1.4 Reaction forces on pipes carrying flows	8
	1.5 Loss of total head at an abrupt expansion	10
2	Velocity fields and pressure fields	13
	2.1 Critical description of a mathematical model	13
	2.2 The pressure field and its gradient	16
	2.3 The velocity field and streamlines	20
	2.4 The solenoidal property	24
3	Equations of motion	29
	3.1 Rate of change following a particle	29
	3.2 Acceleration of a particle of fluid	31
	3.3 Momentum principle for a particle	33
	3.4 Boundary conditions	34
	3.5 Some properties of steady flows	38
4	Vorticity fields	43
	4.1 Analysis of instantaneous deformation of a particle	43
	4.2 Vorticity	45
	4.3 Rate of strain	47
	4.4 Vortextubes	52
	4.5 Circulation	54
5	Vortex dynamics	59
Č		59
	5.1 The persistence of circulation5.2 The movement of vortexlines	59 61
	5.3 Irrotational flow	64
	5.4 Line vortices and vortex sheets	66

x Contents

	5.5 Boundary layers	71	
	5.6 Separation	75	
6	General properties of irrotational flows	80	
	6.1 Pressure and velocity potential	80	
	6.2 Uniqueness of irrotational flow in simply connected regions	84	
	6.3 Related results for flows of given vorticity	88	
	6.4 Supplementary condition for uniqueness in doubly		
	connected regions	93	
7	Three-dimensional examples of irrotational flows	97	
	7.1 Laplace's equation in three dimensions	97	
	7.2 Spherically symmetrical motions	99	
	7.3 Axisymmetrical fairings	106	
	7.4 Drag of streamlined bodies	110	
	7.5 Bluff-body flows	114	
8	Three-dimensional far fields	122	
	8.1 Spherical means and Green's formula	123	
	8.2 Source and dipole far fields	129	
	8.3 Energy, impulse, and added mass	133	
	8.4 Moments applied by steady irrotational flows	140	
	8.5 Drag with a wake	145	
9	Two-dimensional irrotational flows	150	
	9.1 Two-dimensional regions embedded within		
	three-dimensional flows	150	
	9.2 The complex potential	155	
	9.3 The method of conformal mapping	160	
	9.4 Conformal mapping exemplified	165	
10	Flows with circulation		
10		174	
	10.1 Rotating cylinders	175	
	10.2 Aerofoils at incidence	182	
	10.3 Forces on aerofoils	191	

		Contents	5 XI
11	Wir	ig theory	200
	11.1	Trailing vorticity	200
	11.2	Impulse of a vortex system	207
	11.3	Lift and induced drag	215
	11.4	Wings and winglike surfaces in engineering and nature	228
Exercises			243
Index			

239/3164 INSTITUT FOR METEOROLOGIE U. KLIMATOLOGI UNIVERSITAT HANNOVER HERRENHAUSER STR. 2. 3000 HANNOVER 21

· · · · · · · · ·