

Large-Scale Transport Processes in Oceans and Atmosphere

edited by J. Willebrand and D. L.T. Anderson

NATO ASI Series

Séries C: Mathematical and Physical Sciences Vol. 190

Large-Scale Transport Processes in Oceans and Atmosphere

edited by

J. Willebrand

Institut für Meereskunde, Universität Kiel, F.R.G.

and

D. L. T. Anderson

Department of Atmospheric Physics, Oxford University, U.K.

D. Reidel Publishing Company

Dordrecht / Boston / Lancaster / Tokyo

Published in cooperation with NATO Scientific Affairs Division

CONTENTS

CONTENTS	
PREFACE	xi
BUILDING, TESTING AND USING A GENERAL CIRCULATION MODEL by M.L. Blackmon	1
Introduction 1. Building a General Circulation Model 2. Testing a GCM 3. Blocking in a GCM 4. Modeling the southern oscillation References	1 2 20 39 56 67
SOME TOPICS IN THE GENERAL CIRCULATION OF THE ATMOSPHERE by B.J. Hoskins	71
Abstract 1. The observed seasonal mean atmospheric flow 2. Orographic and thermal forcing 3. Transients and the seasonal mean flow 4. Isentropic potential vorticity in the atmosphere Acknowledgement References	71 71 80 88 95 102 103
LECTURES ON OCEAN CIRCULATION DYNAMICS by P.B. Rhines	105
Introduction 1. Vortex stretching and potential vorticity 2. Significance of the transport of potential vorticity by eddies 2. Polettee with the dispersal and orbital metaps of fluid	105 107 113
 3. Relation with the dispersal and orbital motion of fluid particles 4. Wind-driven gyres Appendix: Scale analysis of the circulation integral References 	117 125 152 156

viii	CONTENTS
THERMOHALINE EFFECTS IN THE OCEAN CIRCULATION AND RELATED SIMPLE MODELS by P. Welander	163
by 1. Welander	105
 Historic background The boussinesq approximation, and the density form models Main thermocline regimes, and the role of 	163 167
vertical diffusion 4. Phenomena related to mixed boundary conditions	172 177
5. Thermal and thermohaline oscillators References	191 198
DIAGNOSTIC MODELS OF OCEAN CIRCULATION by D.J. Olbers	201
1. Introduction 2. Water mass and isopycnal analysis 3. The dynamic method 4. The inverse method 5. The \(\mathcal{B}\)-spiral method 6. Summary and Outlook References	201 202 205 209 210 220 221
WIND DRIVEN OCEAN CIRCULATION THEORY - STEADY FREE FLO by J.C. Marshall	OW 225
Abstract 1. Introduction 2. Formulation 3. Steady-state solutions 4. Concluding remarks Acknowledgement References	225 225 226 230 243 243 244
COUPLED OCEAN-ATMOSPHERE MODELS OF EL NINO AND THE SOUTHERN OSCILLATION by J.P. McCreary, JR.	247
Abstract 1. Introduction 2. The model ocean 3. The model atmosphere 4. Results 5. Summary and Discussion Acknowledgements References	247 248 252 254 256 276 278 279

CONTENTS	ix
MAXIMUM ENTROPY PRODUCTION AS A CONSTRAINT IN CLIMATE MODELS	
by S.D. Mobbs	281
1. Introduction	281
 Paltridge's minimum entropy exchange principle Attempts to justify Paltridge's hypothesis 	282 288
4. Application of the minimum entropy exchange principle in one dimensional energy balance models	291
5. Related studies	312
6. The entropy balance equation	314
7. Conclusions References	320 321
Note: Circles	721
HEAT TRANSFER BY THERMAL CONVECTION IN A ROTATING FLUID SUBJECT TO A HORIZONTAL TEMPERATURE GRADIENT	
by R. Hide	325
	1400
 Introduction Geostrophy 	325 327
3. Regimes of thermal convection in a rotating	527
fluid annulus	330
4. Patterns of regular non-axisymmetric flow References	333 335
References)))
reses	
SOME ASPECTS OF TURBULENT DIFFUSION	227
by M. Lesieur	337
1. Introduction	337
2. Kinematics of isotropic turbulence	340
3. Phenomenology of three-dimensional turbulence	341
 Phenomenology of two-dimensional turbulence Analytical theories of isotropic turbulence 	343 345
6. Diffusion of temperature in stratified turbulence	350
7. Conclusion and discussion	354
8. Acknowledgements	354
References	355
TURBULENT DIFFUSION IN LARGE-SCALE FLOWS	
by R. Sadourny	359
1. Introduction	250
2. Diffusion of a passive scalar in two-dimensional flow	359 360
3. Diffusion of vorticity in two-dimensional flow	365
4. Diffusion of potential vorticity in quasi-geostrophic flow	369
References	372
CONCERT	
INDEX	375