Wave interactions and fluid flows

ALEX D. D. CRAIK

Reader in Applied Mathematics, St Andrews University, St Andrews, Fife, Scotland

CAMBRIDGE UNIVERSITY PRESS Cambridge London New York New Rochelle Melbourne Sydney

CONTENTS

		Prefac	ce.	page xi
1	Int	oducti	on	1
	1	Intro	duction	1
	_			~
2	Lin	ear wa	ive interactions	10
2 Flows with piecewise-constant			s with piecewise-constant density and velocity	10
		2.1	Stability of an interface	10
		2.2	A three-layer model	14
		2.3	An energy criterion	17
		2.4	Viscous dissipation	19
	3	Flow	s with constant density and continuous velocity	
		profi	le	21
		3.1	Stability of constant-density flows	21
		3.2	Critical layers and wall layers	23
	4 Flows with density stratification and piecewise-constant			
		veloc	ity	27
		4.1	Continuously-stratified flows	27
		4.2	Vortex sheet with stratification	29
		4.3	Over-reflection and energy flux	31
		4.4	The influence of boundaries	33
	5	Flow	s with continuous profiles of density and velocity	35
		5.1	Unbounded shear layers	35
		5.2	Bounded shear layers	37
		5.3	The critical layer in inviscid stratified flow	41
		5.4	Diffusive effects	44

	6	Mod	els of mode coupling	45
		6.1	Model dispersion relations	45
		6.2	Mode conversion in inhomogeneous media	49
	7	Eigen	nvalue spectra and localized disturbances	51
		7.1	The temporal eigenvalue spectrum	51
		7.2	The spatial eigenvalue spectrum	58
		7.3	Evolution of localized disturbances	59
3	Intr	oducti	on to nonlinear theory	65
	8	Intro	duction to nonlinear theory	65
		8.1	Introductory remarks	65
		8.2	Description of a general disturbance	66
		8.3	Review of special cases	69
4	Wa	ves an	d mean flows	75
	9	Spati	ally-periodic waves in channel flows	75
		9.1	The mean-flow equations	75
		9.2	Particular solutions	77
		9.3	The viscous wall layer	78
	10	Spati	ally-periodic waves on deformable boundaries	81
		10.1	The Eulerian drift velocity of water waves	81
		10.2	'Swimming' of a wavy sheet	84
	11	Mod	Iodulated wave-packets	
		11.1	Waves in viscous channel flows	87
		11.2	Waves on a free surface	90
		11.3	Wave propagation in inhomogeneous media	95
		11.4	Wave action and energy	98
		11.5	Waves in inviscid stratified flow	100
		11.6	Mean flow oscillations due to dissipation	104
	12	Gene	ralized Lagrangian mean (GLM) formulation	105
		12.1	The GLM equations	105
		12.2	Pseudomomentum and pseudoenergy	108
		12.3	Surface gravity waves	109
		12.4	Inviscid shear-flow instability	111
	13	Spati	ally-periodic mean flows	113
		13.1	Forced motions	113
		13.2	Wave-driven longitudinal-vortex instability	120

1	
1 01	TONTS
CON	ienis
-	

5	Thr	ee-wa	ve resonance	123
	14	Cons	servative wave interactions	123
		14.1	Conditions for resonance	123
		14.2	Resonance of capillary-gravity waves	125
		14.3	Some properties of the interaction equations	129
		14.4	Wave-interaction experiments	132
	15	Solut	tions of the conservative interaction equations	136
		15.1	The one-dimensional solutions	136
		15.2	Inverse-scattering solution in two dimensions	139
		15.3	Solutions in three and four dimensions	147
		15.4	Long wave-short wave interactions	150
	16	Linea	arly damped waves	151
		16.1	One wave heavily damped	151
		16.2	Waves dependent on t only	152
		16.3	Higher-order effects	159
	17	Non-	-conservative wave interactions	161
		17.1	Resonant triads in shear flows	161
		17.2	The interaction equations	166
		17.3	Some particular solutions	170
6	Evo	lution	of a nonlinear wave-train	172
	18	Heur	istic derivation of the evolution equations	172
	19	Weal	kly nonlinear waves in inviscid fluids	176
		19.1	Surface and interfacial waves	176
		19.2	Internal waves	182
		19.3	Baroclinic waves	184
	20	Weal	kly nonlinear waves in shear flows	188
		20.1	Waves in inviscid shear flows	188
		20.2	Near-critical plane Poiseuille flow	190
		20.3	Non-critical (nearly) parallel flows	193
	21	Prop	erties of the evolution equations	199
		21.1	Nonlinear Schrödinger equation with real	
			coefficients	199
		21.2	Davey-Stewartson equations with real coefficients	204
		21.3	Nonlinear Schrödinger equation with complex	
			coefficients	206
		21.4	Korteweg-de Vries equation and its relatives	209
	22	Wave	es of larger amplitude	212
		22.1	Large-amplitude surface waves	212
		22.2	Higher-order instability of wave-trains	215

ix

Contents

		22.3	Numerical work on shear-flow instability	219
		22.4	The nonlinear critical layer	226
		22.5	Taylor-Couette flow and Rayleigh-Bénard	
			convection	229
7	Cal	to the	and four wave interactions	231
/	Cut		er and four-wave interactions	231
	23		The reconcise condition	231
		23.1	The temporal evolution equations	231
		23.2	The temporal evolution equations	235
		23.3	Properties of the evolution equations	233
		23.4	Zakharov's equation for gravity waves	237
	24	23.5	Properties of Zakharov's equation	241
	24	Mod	e interactions in Taylor–Couette flow	244
		24.1	Axisymmetric flow	244
		24.2	Periodic wavy vortices	246
		24.3	Effects of finite length	249
		24.4	Doubly-periodic and 'chaotic' flow	253
	25	Rayl	eigh-Bénard convection	258
		25.1	Introduction	258
		25.2	Instabilities of rolls	259
		25.3	Rolls in finite containers	264
		25.4	Three-roll interactions	268
	26	Wave	e interactions in planar shear flows	272
		26.1	Three dominant waves	272
		26.2	Analysis of four-wave interactions	275
		26.3	Direct computational approach	279
8	Str	ong int	eractions, local instabilities and turbulence: a	
	DOS	tscript		282
	27	Stror	ng interactions, local instabilities and turbulence: a	202
	_,	nostscrint		282
		27.1	Short waves and long waves	282
		27.2	Local transition in shear flows	283
		27.3	Some thoughts on transition and turbulence	286
Re	eferei	ices		289
In	Index			319

X