J.K.Platten · J.C. Legros

convection in Liquids

Springer-Verlag Berlin Heidelberg New York Tokyo

Convection in Liquids

With 203 Figures

Springer-Verlag Berlin Heidelberg New York Tokyo 1984

Contents

172/2750 INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIP UNIVERSITÄT HANNOVER HERRENHÄUSER STR. 2 · 3000 HANNOVER 21

PART A : INTRODUCTION

Chapter I - FUNDAMENTAL LAWS AND BASIC CONCEPTS	
1. Balance equations for incompressible fluids	2
A. Conservation of mass	2
B. Conservation of momentum	8
C. Conservation of energy	11
2. Fundamental thermodynamic relations ; entropy balance equation and	
second law	15
A. Alternative forms of the energy balance equation	15
B. The entropy balance equation and the second law of thermodynamics	25
3. Kinetic and constitutive equations	28
4. Systems of coordinates	37
A. Rectangular coordinates	37
B. Cylindrical coordinates	40
C. Special two-dimentional case : the stream function	45
5. Equations for the fluctuations around a steady state	48
6. Definition of stability	53
7. Normal modes	57
8. Dimensionless numbers in fluid dynamics and heat transfer problems	61
Exercices	70
Bibliographical notes	76

Chapter II - MATHEMATICAL BACKGROUND AND COMPUTATIONAL TECHNIQUES

1.	Use of variational principles and/or stationary properties of integrals	77
	A. Elements of variational calculus. The Euler-Lagrange equations	77
	B. Variational approach to the conservations laws based on nonequi-	
	librium thermodynamics : the theory of the local potential	81
	C. The numerical methods associated with the local potential theory	94
	D. Relation between the local potential and the Galerkin techniques	98
2.	Applications to stability problems	100
	A. The excess local potential	100
	B. Variational methods for linear eigenvalue problems	102
	C. Stability criterion based on Lyapounov function	113
3.	Purely numerical techniques	120
	A. Finite differences methods	120
	B. Conversion of a boundary value problem into an initial value problem	134

Exercices Bibliographical notes

PART B : FLUIDS AT CONSTANT DENSITY, ISOTHERMAL FORCED CONVECTION Chapter III - PLANAR FLOWS OF NEWTONIAN FLUIDS 1. Poiseuille and Couette flow 147 A. Plane Poiseuille flow and Poiseuille flow in rectangular channels 147 B. Plane Couette flow 152 2. General statements of linear hydrodynamic stability of forced convection 153 A. The Orr-Sommerfeld equation 153 B. Variational or stationary presentations of the Orr-Sommerfeld equation. Its relation with the Galerkin technique 161 C. The Chock-Schechter integration scheme 171 D. The Orr and the Prigogine-Glansdorff criterion 173 3. Numerical solutions of the Orr-Sommerfeld equation 179 A. Selection of trial functions 179 B. Solution for U = constant184 C. Solution for plane Poiseuille flow 185 a. Effect of trial functions 185 b. High Reynolds numbers 192 c. Two and three dimensional perturbations without elimination of variables. Relation to Squire's theorem 192 d. Finite difference methods 197 e. Solution using the Chock-Schechter method 207 f. General discussion, comparison with experiments 210 213 D. Solution for Couette flow 4. Nonlinear stability of Poiseuille flow 221 A. Introduction 221 228 B. A restricted variational approach to the nonlinear equations C. Influence of the initial amplitude of the disturbance 233 5. An oscillatory solution in planar-Poiseuille flow 240 240 A. Introduction 241 B. Existence of statistically steady states 242 C. Existence of periodic flows D. Stability and/or instability of the new periodic flow 244 6. Remarks on the transition to turbulence 248 252 Bibliographical notes

Chapter IV - CYLINDRICAL FLOWS OF NEWTONIAN FLUIDS

1	. A.	Poiseuille flow in a pipe	254
	Β,	Poiseuille flow down an annular pipe	256
2	. Ge	neral statements on linear stability of forced convection in	
	су	lindrical coordinates	257
	Α.	An equivalent of the Orr-Sommerfeld equation	257
	Β.	Non axisymmetric disturbances	260
3	. Li	near stability of pipe Poiseuille flow	263
	Α.	Stability with respect to two-dimensional axisymmetric	
		disturbances	263
	Β.	Stability with respect to three-dimensional non axisymmetric	
		disturbances	273
Biblioa	raph	ical notes	290
0			
Chapter	V -	FLOW STABILITY OF NON-NEWTONIAN FLUIDS	
1	. St	ress-Strain relations for some particular non-newtonian fluids	291
	Α.	Introduction	291
	Β,	The Coleman-Noll model	292
2	. St	ability of plane Poiseuille flow for a second order viscoelastic	
	f]	uid	294
	Α.	The generalized Orr-Sommerfeld equation	294
	B.	The solution of the generalized Orr-Sommerfeld equation for	
		plane flow	298
	С.	Plane Poiseuille flow : sufficient condition for stability	301
	D.	Instability of plane Poiseuille flow of a second order fluid :	
		a numerical result	303
3	. St	ability of pipe Poiseuille flow for a second order fluid.	306
Bibliog	raph	ical notes	314

PART C : NON ISOTHERMAL ONE COMPONENT SYSTEMS

Chapter VI - FREE CONVECTION IN ONE COMPONENT FLUID

1.	Introduction	315
2.	The linear theory of the Bénard problem	322
	A. The eigenvalue problem. Its solution for simple boundary	
	conditions	322
	B. Solutions based on approximate numerical calculations	348

	a The local metential method	3/0
	a. The focal potential method	340
	D. The chock-schechter humerical integration	350
	C. Solution based on the thermodynamic stability criterion	359
	D. Experimental aspect	367
	E. Effect of lateral boundaries	380
	F. Extension of the Benard problem	406
	a. Surface tension effect	407
	b. Effect of a magnetic field	412
3.	The non-linear theory of the Bénard problem	427
	A. Approximate computational techniques	427
	B. Global properties of the flow	437
	a. Variation of the Nusselt number with the Rayleigh number	
	(free boundary conditions)	437
	b. Variation of the Nusselt number with the Rayleigh number	
	(rigid boundary conditions)	440
	c. Variation of the number of convective cells with the Rayleigh	
	number	446
	C. Fine structure of the flow	4 49
	D. Behavior near threshold	458
	E. Behavior far from the critical point	475
	a. The Lorenz model	475
	b. The routes to turbulence	484
4.	The thermogravitational process	488
	A. The steady state profile	488
	B. The stability of the steady state profile	490
Bibliogr	aphical notes	497
Chapter	VII - NON ISOTHERMAL FORCED CONVECTION IN A ONE-COMPONENT FLUID	
1	General aspects of the effect of temperature gradients	500
2	Temperature gradients imposed by the boundary conditions	501
2	Temperature gradients due to viscous beating	507
5.	A Experimental interest	507
	R. Cylindrical Poisquille flow with viscous beating	509
	b. cyrmanical Porseutine frow with Viscous heating	500
	a. the steady state	309
	b. stability of cylinarical roiseutile flow including viscous	F10
	neating	210
4.	rurther discussion on the multiplicity of steady states when taking	E 2 4
	into account viscous neating	524
Bibliogr	aphical notes	528

Chapter VIII - MIXED CONVECTION IN A ONE-COMPONENT FLUID

	1.	Introduction in the Bénard problem with flow	529
	2.	Relation between two and three dimensional disturbances ;	
		extension of Squire's theorem	534
	3.	Experiments on the onset of free convection with a superposed	
		small laminar flow	545
	4.	Effect of lateral boundaries	556
Bibliographical notes			565

PART D : MULTICOMPONENT SYSTEMS

Chapter IX - FREE CONVECTION IN A MULTICOMPONENT FLUID

	1.	Introduction to the influence of concentration gradients on	
		hydrodynamic stability	567
	2.	Formulation of the linearized problem	569
		A. The conservation equations	569
		B. The thermohaline problem	571
		C. The effect of thermal diffusion (or ${f S}$ oret effect)	574
	3.	The thermohaline convection : linear stability analysis	577
		A. The role of boundary conditions	577
		B. Free boundaries with specified solute concentrations and	
		temperatures	581
		C. Experimental observations	585
	4.	Free convection with thermal diffusion : linear analysis	587
		A. Coupled equations for temperature and mass	587
		B. Exact solution of the simplified problem for free and pervious	
		boundaries	587
		C. Variational solution for rigid boundaries	597
		D. Comparison with experimental results	615
		E. The role of the Dufour effect	630
	5.	Free convection with thermal diffusion : non linear effects	634
		A. Approximate computational techniques	634
		B. Results of the nonlinear analysis and comparison with experiments	636
Bibli	oar	aphical notes	654

Chapter X - MIXED CONVECTION IN MULTICOMPONENT SYSTEMS

	1. Mixed convection in multicomponent systems and measurements of the	
	Soret coefficient	6 57
	2. Results of linear hydrodynamic stability theory	667
	A. Results for $s > 0$	6 6 8
	B. Results for $s < 0$	670
	3. Postface	672
Biblid	graphical notes	675
Append	lix A	676
Append	lix B	679