

# G.K.BATCHELOR The theory of homogeneous turbulence

## THE THEORY OF HOMOGENEOUS TURBULENCE

BY

G. K. BATCHELOR

Professor of Applied Mathematics, University of Cambridge

#### CAMBRIDGE UNIVERSITY PRESS

Cambridge

London New York New Rochelle

Melbourne Sydney

### 14/12744 INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE

UNIVERSIT'AT HANNOVER
HERRENHAUSER STR. 2 • 3000 HANNOVER 21

#### CONTENTS

| Preface                                                   |                                                                     | page ix  |  |  |
|-----------------------------------------------------------|---------------------------------------------------------------------|----------|--|--|
|                                                           |                                                                     |          |  |  |
| I Introduction                                            |                                                                     |          |  |  |
| I.I                                                       | The study of homogeneous turbulence                                 | I        |  |  |
| 1.2                                                       | Mathematical formulation of the problem                             | 3        |  |  |
| 1.3                                                       | Brief history of the subject                                        | 7        |  |  |
|                                                           |                                                                     |          |  |  |
| II Mathematical Representation of the Field of Turbulence |                                                                     |          |  |  |
| 2.1                                                       | Method of taking averages                                           | 14       |  |  |
| 2.2                                                       | The complete statistical specification of the field of              |          |  |  |
|                                                           | turbulence                                                          | 17       |  |  |
| 2.3                                                       | Mean values of velocity products                                    | 19       |  |  |
| 2.4                                                       | General properties of the velocity correlation and spectrum tensors |          |  |  |
| 2.5                                                       | Fourier analysis of the velocity field                              | 23<br>28 |  |  |
| 4.5                                                       | Tourier analysis of the velocity field                              | 20       |  |  |
|                                                           |                                                                     |          |  |  |
|                                                           | III The Kinematics of Homogeneous Turbulence                        |          |  |  |
| 3.1                                                       | The velocity correlation and spectrum tensors                       | 34       |  |  |
| 3.2                                                       | The vorticity correlation and spectrum tensors                      | 38       |  |  |
| 3.3                                                       | Symmetry conditions                                                 | 40       |  |  |
| 3.4                                                       | Isotropic turbulence                                                | 45       |  |  |
|                                                           |                                                                     |          |  |  |
|                                                           | IV Some Linear Problems                                             |          |  |  |
| 4.1                                                       | Simple harmonic oscillator subject to a random force                | 55       |  |  |
| 4.2                                                       | Passage of a turbulent stream through wire gauze                    | 58       |  |  |
| 4.3                                                       | Effect of sudden distortion of a turbulent stream                   | 68       |  |  |
|                                                           |                                                                     |          |  |  |
|                                                           | V The General Dynamics of Decay                                     |          |  |  |
| 5.1                                                       | Methods of using the Navier-Stokes equation                         | 76       |  |  |
| 5.2                                                       | The flow of energy                                                  | .82      |  |  |
| 5.3                                                       | The permanence of big eddies                                        | 88       |  |  |
| 5.4                                                       | The final period of decay                                           | 92       |  |  |
| 5.5                                                       | Dynamical equations for isotropic turbulence                        | 99       |  |  |

|     | VI The Universal Equilibrium Theory                                                      |         |
|-----|------------------------------------------------------------------------------------------|---------|
| 6.I | The hypothesis of statistical equilibrium                                                | page 10 |
| 6.2 | Turbulent motion at large Reynolds number                                                | 106     |
| 6.3 | The hypothesis of independence of Fourier components for distant wave-numbers            | 100     |
| 6.4 | The universal equilibrium                                                                | 112     |
| 6.5 | The inertial subrange                                                                    | 12      |
| 6.6 | The energy spectrum in the equilibrium range                                             | 125     |
|     | VII Decay of the Energy-containing Eddies                                                |         |
| 7.1 | The decay of total energy                                                                | 133     |
| 7.2 | Evidence for the existence of a unique statistical state of the energy-containing eddies | 139     |
| 7.3 | The quasi-equilibrium hypothesis                                                         | 148     |
| 7.4 | The equilibrium at large wave-numbers for moderate<br>Reynolds numbers                   | 155     |
| 7.5 | Heisenberg's form of the energy spectrum in the quasi-<br>equilibrium range              | 161     |
|     | VIII The Probability Distribution of <b>u(x)</b>                                         |         |
| 8.1 | The experimental evidence                                                                | 160     |
| 8.2 | The hypothesis of a normal distribution of the velocity                                  | 109     |
|     | field associated with the energy-containing eddies                                       | 174     |
| 8.3 | Determination of the pressure covariance                                                 | 177     |
| 8.4 | The small-scale properties of the motion                                                 | 183     |
| Вів | SLIOGRAPHY OF RESEARCH ON HOMOGENEOUS                                                    |         |
|     | TURBULENCE                                                                               | 188     |
| INI | DEX                                                                                      | 196     |

196