ATMOSPHERIC MOTION AND AIR POLLUTION

An Introduction for Students of Engineering and Science

RICHARD A. DOBBINS

Professor of Engineering Brown University Providence, Rhode Island

A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS

New York • Chichester • Brisbane • Toronto

130/2526 INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITAT HANNOVER HERRENHAUSER STR. 2 · 3000 HANNOVER 21

CONTENTS

1.	Aero	ostatics and Atmospheric Stability	1
	1.1	The Hypsometric Equation	1
	1.2	The Lapse Rate	4
	1.3	The Static Stability of the Atmosphere	6
	1.4	Potential Temperature	9
	1.5	Potential Density	10
	1.6	The Brunt-Väisällä Frequency	13
	1.7	The Graphical Presentation of Atmospheric Data	15
	Refe	erences	16
	Prol	olems	16
2.	Som	e Concepts of Atmospheric Fluid Dynamics	19
	2.1	The Measurement of Acceleration in a Rotating	
		Coordinate System	19
	2.2	Equations of Fluid Motion in a Rotating Coordinate	
		System	23
	2.3	The Continuity Equation	28
	2.4	Common Approximations of Atmospheric Fluid Dynamics	29
		2.4.1 The Barotropic Fluid	29
		2.4.2 The Hydrostatic Approximation	31
		2.4.3 The Horizontal Flow Approximation	33
		2.4.4 The Geostrophic Approximation	34
	2.5	The Proudman–Taylor Theorem	37
	Refe	erences	38
	Prob	blems	38

xiii

xiv Contents

3.	The Dynamics of Vorticity		
	3.1	The Definition of Vorticity	40
	3.2	The Conservation Properties of Vorticity	45
	3.3	The Dynamics of Vorticity	51
	3.4	The Dynamics of Vorticity in a Rotating Coordinate	
		System	56
	3.5	Vorticity in Large Scale Atmospheric Motions	58
	Refe	erences	60
	Pro	blems	60

4.	Larg	ge Scale Wind-Pressure Systems	63
	4.1	The Low Pressure (Cyclonic) System	64
	4.2	The High Pressure (Anticyclonic) System	66
	4.3	Further Differences Between Cyclonic and Anticyclonic	
		Pressure Systems	67
	Refe	erences	69
	Prob	blems	69

5.	The Che	rmal Radiation and the Atmospheric Structure and mistry	71
	5.1	Concepts of Radiation	72
	5.2	The Equation of Radiative Transfer	79
	5.3	Atmospheric Photochemistry and Thermal Structure	81
		5.3.1 The Thermosphere	81
		5.3.2 The Mesosphere	82
		5.3.3 The Stratosphere	83
		5.3.4 The Troposphere	84
	5.4	The Earth's Radiation Budget and Secular Temperature	
		Trends	84
	5.5	Radiative Inversions	90
	5.6	Chemical Threats to Stratospheric Ozone	91
	Refe	erences	93
	Prob	blems	94

Contents	XV
COMPCOMPCO	

6.	The	Atmos	pheric Boundary Layer	95
	6.1	Reyn	olds Equations for Atmospheric Flows	96
	6.2	Trans	port Concepts in a Turbulent Flow	103
		6.2.1	Momentum and Heat Transport in a Turbulent	
			Boundary Layer	103
		6.2.2	The Mixing Length	106
		6.2.3	The Velocity Distribution near a Surface in the Absence of Buoyancy Effects	107
		624	The Enhancement of Turbulence by Effects of	107
		0.2.1	Buoyancy and the Richardson Numbers	111
	6.3	The N	Seutral Barotropic Atmospheric Boundary Layer	115
		6.3.1	The Equations of Motion of the Neutral,	
			Barotropic Atmospheric Boundary Layer	116
		6.3.2	The Ekman Solution	118
		6.3.3	Ekman Layer Pumping and Subsidence in the Boundary Layer	122
		6.3.4	The Similarity Theory for the Neutral, Barotropic	
			Boundary Layer	126
	6.4	The C	Convective Atmospheric Boundary Layer	129
		6.4.1	The Convective Boundary Layer under Weakly	
			Stable Stratification	130
		6.4.2	The Diurnal Cycle of the Atmospheric Boundary Layer	133
	6.5	Practi	cal Concepts in Boundary Layer Meteorology	137
		6.5.1	Power Law Form of the Velocity Profile	137
		6.5.2	The United States Air Pollution Potential Forecast	
			Program	138
	Refe	erences		139
	Proł	olems		140
7.	The	Motion	of Buoyant Plumes	144
	7.1	The E	intrainment Theory for the Motion of a Bent Plume	148
	7.2	Labor	atory Tests and Field Observations of Plume Rise	151
	7.3	Summ	nary of Practical Formulae	154
	7.4	Plume	Bifurcation	155
	Refe	erences		156
	Prol	olems		157

	C
XVI	Contents

8.	The	Comm	unity Air Pollutants	159
	8.1	The C	Community Air Pollutants and Their Sources	161
	8.2	Healt	h Effects of Pollutants	166
		8.2.1	Carbon Monoxide	167
		8.2.2	Sulfur Oxides in Combination with Particulate	
			Material	168
		8.2.3	Hydrocarbons	169
		8.2.4	Oxides of Nitrogen	169
		8.2.5	Photochemical Oxidants	169
		8.2.6	Particulate Lead Compounds	170
	8.3	The A	Ambient Air Quality Standards	170
	8.4	Photo	ochemical Smog Reactions	171
		8.4.1	The NO-NO ₂ -O ₃ Photochemical Reaction	
			Sequence	174
		8.4.2	The NO–NO ₂ Conversion	178
		8.4.3	The Chemical-Meteorological Interaction of	
			Photochemical Oxidant Pollutants	183
	8.5	The A	Atmospheric Aerosol	184
		8.5.1	Particle Size Distribution	184
		8.5.2	The Optical Properties of Aerosols	188
		8.5.3	The Chemical Composition of the Atmospheric	
			Aerosol and Identification of Source Materials	193
	Ref	erences		195
	Pro	blems		197
			fan binder en ei g	
9.	Dis	persion	of Air Pollutants—Introduction	199
	9.1	The C	Conservation of Mass in the Presence of Molecular	
		Diffus	sion and Chemical Reactions	200
	9.2	Some	Exact Solutions for the Diffusion Equation	202
		9.2.1	Unsteady Diffusion from an Instantaneous Point	
			Source in a Quiescent Fluid	203
		9.2.2	Diffusion from an Instantaneous Point Source in	205
		0.0.0	an Anisotropic Medium	205
		9.2.3	I ne Instantaneous Point Source above an Impenetrable Ground Plane	205
		024	Diffusion from an Instantaneous Palease in a	205
		7.2.4	Uniform Laminar Flow	206

		9.2.5 D in	iffusion from an Instantaneous Elevated Release a Laminar Flow above an Impenetrable Ground	
		Pl	ane	206
	9.3	The Eule	rian Description of Turbulent Dispersion	207
	9.4	The Lagr	angian Description of Turbulent Dispersion	209
	9.5	Some Im	portant Experimental Results on Turbulent	
		Dispersic	on	215
	Refer	rences		216
	Prob	lems		217
10.	Disp	persion of	Air Pollutants—The Gaussian Plume Model	219
	10.1	The G	aussian Plume Model for the Turbulent	
		Disper	sion from an Isolated Point Source	220
	10.2	Multip	le Point Sources with an Arbitrary Wind	
		Directi	ion	227
	10.3	Polluta	ant Confinement within the Mixed Layer	229
	10.4	Other	Source Geometries	232
		10.4.1	Line Sources	232
		10.4.2	Area Sources	235
	10.5	Long-	Ferm Averaging	240
	10.6	Compu Metho	uter Programs Employing the Gaussian Plume d	241
	10.7	The G	aussian Plume Model Compared with	243
	10.8	The G	aussian Puff Model for Instantaneous Releases	245
	Refe	erences	aussian i un model for instantaneous releases	245
	Prol	hlems		240
	1100	orenns	and the second	241
11.	Disp Floy	persion of vs	Pollutants-Reacting Components and Unsteady	250
	11.1		(manipularia Diamanian Davidian (WTI)	250
	11.1	I ne A	The Continue Transform Equation (K Theory)	250
		11.1.1	The Gradient-Transport Hypothesis	251
		11 1 2	The Turbulent Diffusivity	251
		11.1.2	Solutions to the Simplified Atmospheric	200
		11.1.3	Dispersion Equation	258
			11.1.3.1 The K Theory Solutions for an	230
			Infinite Line Source	260

xviii	Cont	ents

			11.1.3.2	Semi-Infinite Area Source—	
				Similarity Solution	262
			11.1.3.3	The Semi-Infinite Area Source—	
				Integral Method of Solution	262
		11.1.4	Comparis	sons of Predictions of the Gaussian	
			Plume Mo	odel and the Atmospheric	
			Dispersio	n Equation	265
		11.1.5	Solutions	to the Atmospheric Dispersion	
			Equation	Compared to Observed	
		د د با ب	Concentra	ations	268
	11.2	Cell M	odels		272
		11.2.1	The Dyna	amic Airshed Model	273
		11.2.2	The Single	e Cell Dynamic Model	274
		11.2.3	The Clima	atological Inverse Wind Correlation	276
	11.3	Other 1	Methods of	Analysis	277
	Refer	ences			278
	Probl	ems			280
12.	Air P	ollution	, the Meteo	rological Record, and Long-Distance	
	Turner	and af	Dallatanta		000
	Trans	sport of	Pollutants		283
	Trans 12.1	The A	Pollutants tmospheric	Monitoring Network in the	283
	Trans 12.1	The A Contig	Pollutants tmospheric uous Unite	Monitoring Network in the ed States	283 283
	Trans 12.1 12.2	The A Contig Climat	Pollutants tmospheric guous Unite cological St	Monitoring Network in the ed States udies of the Atmospheric Boundary	283 283 286
	Trans 12.1 12.2	The A Contig Climat Layer	Pollutants tmospheric guous Unite cological St	Monitoring Network in the ed States udies of the Atmospheric Boundary	283283286290
	Trans 12.1 12.2 12.3 12.4	The A Contig Climat Layer Retros	Pollutants tmospheric uous Unite cological St pective Stu	Monitoring Network in the ed States udies of the Atmospheric Boundary dies of Air Pollution Episodes	 283 283 286 290 293
	Trans 12.1 12.2 12.3 12.4	The A Contig Climat Layer Retros Synop	Pollutants tmospheric uous Unite cological St pective Stu tic Scale Tr	Monitoring Network in the ed States udies of the Atmospheric Boundary dies of Air Pollution Episodes cansport of Pollutants	283 283 286 290 293 203
	Trans 12.1 12.2 12.3 12.4	The A Contig Climat Layer Retros Synop 12.4.1	Pollutants tmospheric guous Unite cological St pective Stu tic Scale Tr Acid Prec	Monitoring Network in the ed States udies of the Atmospheric Boundary dies of Air Pollution Episodes cansport of Pollutants cipitation and Sulfate Transport	283 283 286 290 293 293
	Trans 12.1 12.2 12.3 12.4	The A Contig Climat Layer Retros Synop 12.4.1 12.4.2	Pollutants tmospheric cological St pective Stu tic Scale Tr Acid Prec Long-Dis	Monitoring Network in the ed States udies of the Atmospheric Boundary dies of Air Pollution Episodes cansport of Pollutants cipitation and Sulfate Transport stance Transport of Ozone	283 283 286 290 293 293 300
	Trans 12.1 12.2 12.3 12.4 Refer	The A Contig Climat Layer Retros Synop 12.4.1 12.4.2 ences	Pollutants tmospheric cological St pective Stu tic Scale Tr Acid Prec Long-Dis	Monitoring Network in the ed States udies of the Atmospheric Boundary dies of Air Pollution Episodes ransport of Pollutants cipitation and Sulfate Transport stance Transport of Ozone	283 283 286 290 293 293 300 303
	Trans 12.1 12.2 12.3 12.4 Refer Probl	The A The A Contig Climat Layer Retros Synop 12.4.1 12.4.2 ences ems	Pollutants tmospheric guous Unite cological St pective Stu tic Scale Tr Acid Prec Long-Dis	Monitoring Network in the ed States udies of the Atmospheric Boundary dies of Air Pollution Episodes cansport of Pollutants cipitation and Sulfate Transport stance Transport of Ozone	283 283 286 290 293 293 300 303 305
Ann	Trans 12.1 12.2 12.3 12.4 Refer Probl endix 1	The A The A Contig Climat Layer Retros Synop 12.4.1 12.4.2 ences ems	Pollutants tmospheric guous Unite cological St pective Stu tic Scale Tr Acid Prec Long-Dis	Monitoring Network in the ed States udies of the Atmospheric Boundary dies of Air Pollution Episodes cansport of Pollutants cipitation and Sulfate Transport stance Transport of Ozone	 283 283 286 290 293 293 300 303 305
App Deri	Trans 12.1 12.2 12.3 12.4 Refer Probl endix I	The A The A Contig Climat Layer Retros Synop 12.4.1 12.4.2 ences ems I. Vect in Seven	Pollutants tmospheric guous Unite cological St pective Stu tic Scale Tr Acid Prec Long-Dis or Identitie al Coordina	Monitoring Network in the ed States udies of the Atmospheric Boundary dies of Air Pollution Episodes cansport of Pollutants cipitation and Sulfate Transport stance Transport of Ozone s, Vector Operators, and the Particle ate Systems	283 283 286 290 293 293 300 303 305 307
App Deri App	Trans 12.1 12.2 12.3 12.4 Refer Probl endix I ivative endix I	The A The A Contig Climat Layer Retros Synop 12.4.1 12.4.2 ences ems I. Vect in Seven	Pollutants tmospheric guous Unite cological St pective Stu tic Scale Tr Acid Prec Long-Dis or Identitie val Coordina	Monitoring Network in the ed States udies of the Atmospheric Boundary dies of Air Pollution Episodes ransport of Pollutants cipitation and Sulfate Transport stance Transport of Ozone s, Vector Operators, and the Particle ate Systems ta	 283 283 286 290 293 203 300 303 305 307 310