P. RAETHJEN

EINFÜHRUNG IN DIE PHYSIK DER ATMOSPHÄRE

BAND II

LEIPZIG · B. G. TEUBNER · BERLIN

EINFÜHRUNG IN DIE PHYSIK DER ATMOSPHÄRE

BAND II

METEOROLOGISCHE AERODYNAMIK

VON

P. RAETHJEN

IN HAMBURG

MIT 57 ABBILDUNGEN IM TEXT

1942

LEIPZIG UND BERLIN
VERLAG UND DRUCK VON B. G. TEUBNER

Inhaltsübersicht

I. Kapitel: Kinematik und kleinräumige Dynamik

§ 1. Mechanik eines Massenpunktes	1
a) Die Bewegungsvektoren	1
b) Kraft und Beschleunigung	5
c) Allgemeines über Vektoren	7
d) Impulssatz	9
e) Energieerhaltung	10
f) Die harmonische Schwingung	12
§ 2. Druckgradient und hydrodynamische Grundgleichungen	15
a) Hydrostatischer Druckgradient	15
b) Allgemeine Theorie des Druckgradienten	16
c) Eulersche Grundgleichungen (ohne Reibung)	18
d) Individuelle und lokale Beschleunigung	20
§ 3. Hydrodynamischer Druck und Bernoullische Gleichung	21
a) Statischer und dynamischer Druck	21
b) Bernoullische Gleichung	22
c) Gültigkeitseinschränkungen	24
d) Anwendungen der Bernoullischen Gleichung	25
e) Statisch erweiterte Bernoulli-Gleichung	32
§ 4. Zwei typische Beispiele bahnsenkrechter Beschleunigungen.	32
a) Rotation	32
b) Drehungsfreie Kreiszirkulation	35
§ 5. Quellen und Senken	38
a) Punktquelle	38
b) Quelle und Senke	39
c) Punktquellen im Strömungskanal	40
d) Potentialstromfelder	41
e) Dreidimensionale Divergenz und Kontinuitätsgleichung	42
f) Zweidimensionale Stromfelddivergenz	44
§ 6. Atmosphärische Vertikalbeschleunigungen	50
a) Vertikalschwingungen einzelner Luftquanten	51
b) Statische Stabilität und Labilität	55
c) Cumulusaufwind	57
d) Feuchtlabilitätsenergie und Kreisprozeßenergie	66
e) Anwendbarkeitsgrenzen der barometrischen Höhenformel	69
§ 7. Vertikalaustausch und Turbulenz	73
a) Bedeutung des atmosphärischen Vertikalaustausches	74
b) Austauschfluß und Austauschkoeffizient	76
c) Mischungsweg	80
d) Hydrodynamische Scherungsturbulenz	81
e) Scherungsturbulenz und Thermikaustausch	85
f) Austausch durch auf- und abgleitende Luftmassen, Wärmeaustausch	
im Meridianschnitt	87
g) Innere Reibung	90

II. Kapitel: Großräumige Aerodynamik

§ 8. Rotationsmoment und Trägheitskreis	. 94
a) Erhaltung des Rotationsmoments (Flächensatz)	. 94
b) Das Ruhgleichgewicht auf der abgeplatteten Erdoberfläche	. 101
c) Trägheitsbewegung in einer rotierenden Gleichgewichtsschale	
d) Trägheitsbewegung auf der Erdoberfläche	
e) Austauschbewegungen in der Fläche gleicher potentieller Temperatur	. 109
f) Austauschgleichgewicht und Ruhgleichgewicht	. 112
g) Austausch und Höhenwind	. 118
§ 9. Coriolisbeschleunigung und reibungslose Strömungsglei	10000
chungen	
a) Horizontalströmung	
b) Der Coriolisbeschleunigungsvektor	
e) Hydrodynamische Grundgleichungen	
d) Gradientwind und geostrophischer Wind	
e) Isobarflächentopographie und Höhenwind	
f) Geostrophisch driftendes Koordinatensystem	
§ 10. Die bodennahe Reibungsschicht	
a) Reibung am Erdboden nach Guldberg und Mohn	
b) Strömungsgrundgleichungen mit Vertikalaustausch	
c) Ekmanspirale	
d) Massenfluß vom Hoch zum Tief	
e) Reibungsarbeit	
§ 11. Strömungsgleichgewicht der freien Atmosphäre	
a) Arbeitsvorrat und stabiles Gleichgewicht	
b) Margulessche (geostrophische) Gleichgewichtsbedingungen	
c) Stüvesche (geostrophische) Gleichgewichtsbedingung	
d) Das natürliche Koordinatensystem der freien Atmosphäre	
§ 12. Wetterluftmassen, Frontalzonen, Grenzflächen	
a) Erfahrungstatsachen b) Neigung der Isentropenflächen im Austauschgleichgewicht	
c) Aufteilung der Atmosphäre in Wetterluftmassen	
d) Grenzflächen und Isentropenflächen	
2000년 1일 12일 12일 12일 12일 12일 12일 12일 12일 12일	
§ 13. Stabilität und Labilität des geostrophischen Windfeldes	
a) Begriff und Kennzeichen der Stabilität und Labilität	
b) Statische Stabilität des Temperaturfeldes und Trägheitsstabilität de	
Windfeldes	
d) Stabiler und labiler Sektor	
e) Das Aufgleiten der Wolkenluft im feuchtlabilen Sektor	
는 BRO HER SOUTH NORTH SOUTH HER BROWN OF THE BROWN HER BROWN HER BROWN HER BROWN HER BROWN HER BROWN HER BROWN	
§ 14. Zirkulationsbeschleunigung	
a) Flüssige Linie, Zirkulation und Zirkulationsbeschleunigung	
b) Quasistatischer Teil der Zirkulationsbeschleunigung	
c) Trägheitsanteil der Zirkulationsbeschleunigung	
d) Gesamte Zirkulationsbeschleunigung und Strömungsgleichgewicht	
Lösungen zu den Übungsaufgaben	. 233
Formelzeichen	. 251