Introduction to MICROMETEOROLOGY

INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIF UNIVERSITET HANNOVER HERRENHZUSER STR. 2 - 3009 HANNOVER 21

5.261 / 3299

DK 551.5(075) 551.584 551.510.522

Introduction to Micrometeorology

S. Pal Arya

Department of Marine, Earth and Atmospheric Sciences College of Physical and Mathematical Sciences North Carolina State University Raleigh, North Carolina

ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers

San Diego New York Berkeley Boston London Sydney Tokyo Toronto

Contents

Prefe Sym	ace bols apter 1 Introduction	xi xv
1.1 1.2 1.3	Scope of Micrometeorology Micrometeorology versus Microclimatology Importance and Applications of Micrometeorology Problems and Exercises	1 3 4 8
Cha	pter 2 Energy Budget near the Surface	
2.1 2.2 2.3 2.4	Energy Fluxes at an Ideal Surface Energy Balance Equations Some Examples of Energy Budget Applications Problems and Exercises	9 10 15 19 19
Cha	pter 3 Radiation Balance near the Surface	
3.1 3.2 3.3 3.4 3.5 3.6	Radiation Laws and Definitions Shortwave Radiation Longwave Radiation Radiation Balance near the Surface Radiative Flux Divergence Applications Problems and Exercises	21 24 29 30 33 35 35

viii Contents

Chapter 4 Soil Temperatures and Heat Transfer

4.1	Surface Temperature	37
4.2	Subsurface Temperatures	39
4.3	Thermal Properties of Soils	40
4.4	Theory of Soil Heat Transfer	41
4.5	Applications	46
	Problems and Exercises	46
Ch	apter 5 Air Temperature and Humidity in the PBL	
5.1	Factors Influencing Air Temperature and Humidity	49
5.2	Basic Thermodynamic Relations and Definitions	50
5.3	Static Stability	54
5.4	Mixed Lavers and Inversions	57
5.5	Vertical Temperature and Humidity Profiles	58
5.6	Diurnal Variations	61
5.7	Applications	63
	Problems and Exercises	64
Ch	apter 6 Wind Distribution in the PBL	
61	Eactors Influencing Wind Distribution	67
6.2	Geostrophic and Thermal Winds	68
6.3	The Effects of Friction	71
6.4	The Effects of Stability	71
6.5	Observed Wind Profiles	74
6.6	Diurnal Variations	91
6.7	Applications	01
0.7	Droblems and Exercises	04 Q /
	Frobenis and Exercises	04
Cha	apter 7 An Introduction to Viscous Flows	
7.1	Inviscid and Viscous Flows	87
7.2	Laminar and Turbulent Flows	90
7.3	Equations of Motion	91
7.4	Plane-Parallel Flows	93
7.5	Ekman Layers	95
7.6	Developing Boundary Layers	99
7.7	Heat Transfer in Fluids	103
7.8	Applications	106
	Problems and Exercises	106
Cha	apter 8 Fundamentals of Turbulence	
8.1	Instability of Flow and Transition to Turbulence	109
8.2	The Generation and Maintenance of Turbulence	113
8.3	General Characteristics of Turbulence	114
8.4	Mean and Fluctuating Variables	115
8.5	Variances and Turbulent Fluxes	117
8.6	Eddies and Scales of Motion	119
8.7	Applications	121
	Problems and Exercises	121

		Contents	ix
Cha	nter 9 Semiempirical Theories of Turbulence		
0.1	Mathematical Description of Turbulant Flows		122
9.1	Gradient-Transport Theories		123
9.3	Dimensional Analysis and Similarity Theories		133
9.4	Applications		139
	Problems and Exercises		139
Cha	pter 10 Neutral Boundary Layers		
10.1	Velocity-Profile Laws		141
10.2	Surface Roughness Parameters		148
10.3	Surface Stress and Drag Coefficient		152
10.4	Applications		153
10.5	Problems and Exercises		155
Cha	pter 11 Momentum and Heat Exchanges with Homogeneous Surfaces		
11.1			157
11.1	The Monin–Obukhov Similarity Theory		157
11.2	Wind and Temperature Profiles		166
11.4	Drag and Heat Transfer Coefficients		167
11.5	Methods of Determining Momentum and Heat Fluxes		169
11.6	Applications		179
	Problems and Exercises		179
Cha	pter 12 Evaporation from Homogeneous Surfaces		
12.1	The Process of Evenoration		183
12.1	Potential Evaporation and Evapotranspiration		184
12.3	Modified Monin–Obukhov Similarity Relations		186
12.4	Micrometeorological Methods of Determining Evaporation		189
12.5	Applications		195
	Problems and Exercises		195
Cha	pter 13 Marine Atmospheric Boundary Layer		
13.1	Sea-Surface Characteristics		197
13.2	Momentum Transfer to the Sea Surface		203
13.3	Parameterization of Air–Sea Exchanges		211
13.4	Turbulence over Water		214
13.6	Applications		219
	Problems and Exercises		221

X Contents

Chapter 14 Nonhomogeneous Boundary Layers

14.1	Types of Surface Inhomogeneities	223
14.2	Step Changes in Surface Roughness	224
14.3	Step Changes in Surface Temperature	231
14.4	Air Modifications over Water Surfaces	235
14.5	Air Modifications over Urban Areas	237
14.6	Building Wakes and Street Canyon Effects	245
14.7	Other Topographical Effects	252
14.8	Applications	259
	Problems and Exercises	260

Chapter 15 Agricultural and Forest Micrometeorology

15.1	Flux-Profile Relations above Plant Canopies	263
15.2	Radiation Balance within Plant Canopies	266
15.3	Wind Distribution in Plant Canopies	271
15.4	Temperature and Moisture Fields	273
15.5	Turbulence in Plant Canopies	277
15.6	Applications	282
	Problems and Exercises	284
Ref	erences	287
Inde	x	295
Inter	national Geophysics Series	305

International	Geophysics	Series
---------------	------------	--------